Clegg S T, Roemer R B
J Biomech Eng. 1985 Aug;107(3):228-33. doi: 10.1115/1.3138547.
In cancer hyperthermia treatments, it is important to be able to predict complete tissue temperature fields from sampled temperatures taken at the limited number of locations allowed by clinical constraints. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between experimental temperatures and temperatures predicted from treatment simulations has been previously reported [1]. This paper reports on a comparative study which applies a range of different optimization techniques (relaxation, steepest descent, conjugate gradient, Gauss, Box-Kanemasu, and Modified Box-Kanemasu) to this problem. The results show that the Gauss method converges more rapidly than the others, and that it converges to the correct solution regardless of the initial guess for the unknown blood perfusion vector. A sensitivity study of the error space is also performed, and the relationships between the error space characteristics and the comparative speeds of the optimization techniques are discussed.
在癌症热疗中,能够根据临床限制所允许的有限数量位置处采集的采样温度来预测完整的组织温度场非常重要。先前已有报道尝试使用无约束优化技术自动执行此操作,以最小化实验温度与治疗模拟预测温度之间的差异[1]。本文报道了一项比较研究,该研究将一系列不同的优化技术(松弛法、最速下降法、共轭梯度法、高斯法、Box-Kanemasu法和改进的Box-Kanemasu法)应用于此问题。结果表明,高斯法比其他方法收敛得更快,并且无论对未知血液灌注向量的初始猜测如何,它都能收敛到正确的解。还进行了误差空间的敏感性研究,并讨论了误差空间特征与优化技术比较速度之间的关系。