Suppr超能文献

人工智能驱动的改善安全与健康的解决方案:REDECA框架在农业拖拉机驾驶员中的应用。

AI-driven solutions to improve safety and health: Application of the REDECA framework for agricultural tractor drivers.

作者信息

Ashrafi Negin, Yousefi Sahar, Aby Guy Roger, Issa Salah F, Darabi Houshang, Alaei Kamiar, Placencia Greg, Pishgar Maryam

机构信息

Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California, United States of America.

Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

出版信息

PLOS Glob Public Health. 2025 Jun 4;5(6):e0003543. doi: 10.1371/journal.pgph.0003543. eCollection 2025.

Abstract

INTRODUCTION

Despite tremendous efforts, including research, teaching, and extension, toward improving the safety of agricultural tractor drivers, the number of incidents related to agricultural tractor drivers has not declined. This evidence points out an urgent need to explore artificial intelligence (AI) solutions to improve the safety of tractor drivers.

METHODS

This paper uses 171 Fatality Assessment and Control Evaluation (FACE) reports related to tractor drivers and a new framework called Risk Evolution, Detection, Evaluation, and Control of Accidents (REDECA) to identify existing AI solutions, such as machine learning models for predictive maintenance, sensor-based monitoring, computer vision, and automated safety interventions, and specific areas where AI solutions are missed and can be developed to reduce incidents and recovery time. Fatality reports of tractor drivers were categorized into six main categories, including run over, pinned by/ Crushed and entanglement, fall, fire, roll over, and overturn. Each category was then subcategorized based on similarities of incident causes in the reports.

RESULTS

The application of the REDECA framework, which categorizes risk states into R1 (safe), R2 (hazard exposure), and R3 (incident), revealed potential AI solutions that could improve the safety of tractor drivers. In all categories, the REDECA framework lacks AI solutions for three elements, including the probability of reducing recovery time in R3, detecting changes between R2 and R3, and intervention to send workers to R2. Most of the categories were missing AI solutions for interventions to prevent entry to the R3 element of the REDECA. In addition, the fall, roll over, and overturn categories lacked AI intervention that minimized damage and recovery in R3.

CONCLUSIONS

The outcome of this study shows an urgent need to develop AI solutions to improve tractor driver safety.

摘要

引言

尽管在包括研究、教学和推广在内的诸多方面付出了巨大努力以提高农用拖拉机驾驶员的安全性,但与农用拖拉机驾驶员相关的事故数量并未下降。这一证据表明迫切需要探索人工智能(AI)解决方案来提高拖拉机驾驶员的安全性。

方法

本文使用了171份与拖拉机驾驶员相关的死亡评估与控制评价(FACE)报告以及一个名为事故风险演化、检测、评估与控制(REDECA)的新框架,以识别现有的人工智能解决方案,如用于预测性维护的机器学习模型、基于传感器的监测、计算机视觉和自动安全干预措施,以及人工智能解决方案缺失且可开发以减少事故和恢复时间的特定领域。拖拉机驾驶员的死亡报告被分为六个主要类别,包括碾压、被夹住/挤压和缠绕、摔倒、火灾、侧翻和翻车。然后根据报告中事故原因的相似性对每个类别进行细分。

结果

REDECA框架将风险状态分为R1(安全)、R2(危险暴露)和R3(事故),该框架的应用揭示了可能提高拖拉机驾驶员安全性的潜在人工智能解决方案。在所有类别中,REDECA框架在三个要素方面缺乏人工智能解决方案,包括降低R3中恢复时间的概率、检测R2和R3之间的变化以及将工人送回R2的干预措施。大多数类别都缺少用于防止进入REDECA的R3要素的人工智能干预解决方案。此外,摔倒、侧翻和翻车类别缺乏将R3中的损害和恢复降至最低的人工智能干预措施。

结论

本研究结果表明迫切需要开发人工智能解决方案以提高拖拉机驾驶员的安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd50/12136288/179d55eb8f43/pgph.0003543.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验