Saberi Amin, Wischnewski Kevin J, Jung Kyesam, Lotter Leon D, Schaare H Lina, Banaschewski Tobias, Barker Gareth J, Bokde Arun L W, Desrivières Sylvane, Flor Herta, Grigis Antoine, Garavan Hugh, Gowland Penny, Heinz Andreas, Brühl Rüdiger, Martinot Jean-Luc, Martinot Marie-Laure Paillère, Artiges Eric, Nees Frauke, Papadopoulos Orfanos Dimitri, Lemaitre Herve, Poustka Luise, Hohmann Sarah, Holz Nathalie, Baeuchl Christian, Smolka Michael N, Vaidya Nilakshi, Walter Henrik, Whelan Robert, Schumann Gunter, Paus Tomáš, Dukart Juergen, Bernhardt Boris C, Popovych Oleksandr V, Eickhoff Simon B, Valk Sofie L
Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Sci Adv. 2025 Jun 6;11(23):eadr8164. doi: 10.1126/sciadv.adr8164. Epub 2025 Jun 4.
The excitation-inhibition ratio is a key functional property of cortical microcircuits which changes throughout an individual's lifespan. Adolescence is considered a critical period for maturation of excitation-inhibition ratio. This has primarily been observed in animal studies. However, there is limited human in vivo evidence for maturation of excitation-inhibition ratio at the individual level. Here, we developed an individualized in vivo marker of regional excitation-inhibition ratio in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional imaging data from both cross-sectional ( = 752) and longitudinal ( = 149) cohorts. In both datasets, we found a widespread decrease in excitation-inhibition ratio in association areas, paralleled by an increase or lack of change in sensorimotor areas. This developmental pattern was aligned with multiscale markers of sensorimotor-association differentiation. Although our main findings were robust across alternative modeling configurations, we observed local variations, highlighting the importance of methodological choices for future studies.
兴奋抑制比是皮质微回路的关键功能特性,它在个体的整个生命周期中都会发生变化。青春期被认为是兴奋抑制比成熟的关键时期。这主要是在动物研究中观察到的。然而,在个体水平上,关于兴奋抑制比成熟的人体体内证据有限。在这里,我们开发了一种针对人类青少年区域兴奋抑制比的个性化体内标志物,该标志物是通过对生物物理网络模型进行大规模模拟来估计的,这些模型拟合了来自横断面(n = 752)和纵向(n = 149)队列的静息态功能成像数据。在这两个数据集中,我们发现联合区域的兴奋抑制比普遍下降,同时感觉运动区域出现增加或没有变化。这种发育模式与感觉运动 - 联合分化的多尺度标志物一致。尽管我们的主要发现在替代建模配置中是稳健的,但我们观察到了局部差异,突出了方法选择对未来研究的重要性。
Proc Natl Acad Sci U S A. 2024-6-4
Proc Natl Acad Sci U S A. 2024-6-4
Sci Rep. 2023-12-7
Brain Commun. 2022-12-15
Trends Neurosci. 2022-12
Nat Methods. 2022-11