Suppr超能文献

结合空间独立成分分析与回归来识别静息态功能磁共振成像功能网络的皮质下成分。

Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.

作者信息

Malherbe Caroline, Messé Arnaud, Bardinet Eric, Pélégrini-Issac Mélanie, Perlbarg Vincent, Marrelec Guillaume, Worbe Yulia, Yelnik Jérôme, Lehéricy Stéphane, Benali Habib

机构信息

1 Inserm/UPMC Univ Paris 6, UMR-S 678, Laboratoire d'Imagerie Fonctionnelle , Paris, France .

出版信息

Brain Connect. 2014 Apr;4(3):181-92. doi: 10.1089/brain.2013.0160.

Abstract

Functional brain networks are sets of cortical, subcortical, and cerebellar regions whose neuronal activities are synchronous over multiple time scales. Spatial independent component analysis (sICA) is a widespread approach that is used to identify functional networks in the human brain from functional magnetic resonance imaging (fMRI) resting-state data, and there is now a general agreement regarding the cortical regions involved in each network. It is well known that these cortical regions are preferentially connected with specific subcortical functional territories; however, subcortical components (SC) have not been observed whether in a robust or in a reproducible manner using sICA. This article presents a new method to analyze resting-state fMRI data that enables robust and reproducible association of subcortical regions with well-known patterns of cortical regions. The approach relies on the hypothesis that the time course in subcortical regions is similar to that in cortical regions belonging to the same network. First, sICA followed by hierarchical clustering is performed on cortical time series to extract group functional cortical networks. Second, these networks are complemented with related subcortical areas based on the similarity of their time courses, using an individual general linear model and a random-effect group analysis. Two independent resting-state fMRI datasets were processed, and the SC of both datasets overlapped by 69% to 99% depending on the network, showing the reproducibility and the robustness of our approach. The relationship between SC and functional cortical networks was consistent with functional territories (sensorimotor, associative, and limbic) from an immunohistochemical atlas of the basal ganglia.

摘要

功能脑网络是由皮质、皮质下和小脑区域组成的集合,其神经元活动在多个时间尺度上是同步的。空间独立成分分析(sICA)是一种广泛使用的方法,用于从功能磁共振成像(fMRI)静息态数据中识别人类大脑中的功能网络,目前对于每个网络中涉及的皮质区域已达成普遍共识。众所周知,这些皮质区域优先与特定的皮质下功能区域相连;然而,使用sICA尚未以稳健或可重复的方式观察到皮质下成分(SC)。本文提出了一种分析静息态fMRI数据的新方法,该方法能够使皮质下区域与众所周知的皮质区域模式进行稳健且可重复的关联。该方法基于这样的假设,即皮质下区域的时间进程与属于同一网络的皮质区域的时间进程相似。首先,对皮质时间序列进行sICA,然后进行层次聚类,以提取组功能皮质网络。其次,使用个体通用线性模型和随机效应组分析,根据时间进程的相似性,用相关的皮质下区域对这些网络进行补充。对两个独立的静息态fMRI数据集进行了处理,根据网络的不同,两个数据集的SC重叠率为69%至99%,这表明了我们方法的可重复性和稳健性。SC与功能性皮质网络之间的关系与基底神经节免疫组化图谱中的功能区域(感觉运动、联合和边缘)一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验