Suppr超能文献

DeepDeconUQ可估计批量RNA测序组织中的恶性细胞分数预测区间。

DeepDeconUQ estimates malignant cell fraction prediction intervals in bulk RNA-seq tissue.

作者信息

Huang Jiawei, Du Yuxuan, Kelly Kevin R, Lv Jinchi, Fan Yingying, Zhong Jiang F, Sun Fengzhu

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America.

Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, United States of America.

出版信息

PLoS Comput Biol. 2025 Jun 4;21(6):e1013133. doi: 10.1371/journal.pcbi.1013133. eCollection 2025 Jun.

Abstract

Accurate estimation of malignant cell fractions in tissues plays a critical role in cancer diagnosis, prognosis, and subsequent treatment decisions. However, most currently available methods provide only point estimates, neglecting the quantification of uncertainties, which is essential for both clinical and research applications. This study introduces DeepDeconUQ, a deep neural network model developed to estimate prediction intervals for malignant cell fractions based on bulk RNA-seq data. This approach addresses limitations in current malignant cell fraction estimation methods by integrating uncertainty quantification into predictions of cancer cell fractions. DeepDeconUQ leverages single-cell RNA sequencing (scRNA-seq) data in conjunction with conformalized quantile regression to produce reliable prediction intervals. The model trains a quantile regression neural network to establish upper and lower bounds for cancer cell proportions, followed by a calibration step that refines these intervals to ensure both statistical validity (coverage probability) and discrimination (narrow intervals). Benchmark analyses indicate that DeepDeconUQ consistently surpasses existing methods, achieving high coverage accuracy with tight prediction intervals across simulated and real cancer datasets. The robustness of DeepDeconUQ is further demonstrated by its resilience to various gene expression perturbations. The DeepDeconUQ method is publicly accessible at https://github.com/jiaweih14/DeepDeconUQ.

摘要

准确估计组织中的恶性细胞分数在癌症诊断、预后及后续治疗决策中起着关键作用。然而,目前大多数可用方法仅提供点估计,忽略了不确定性的量化,而这对于临床和研究应用都至关重要。本研究介绍了DeepDeconUQ,这是一种基于批量RNA测序数据开发的用于估计恶性细胞分数预测区间的深度神经网络模型。该方法通过将不确定性量化整合到癌细胞分数预测中,解决了当前恶性细胞分数估计方法的局限性。DeepDeconUQ利用单细胞RNA测序(scRNA-seq)数据结合共形分位数回归来产生可靠的预测区间。该模型训练一个分位数回归神经网络来建立癌细胞比例的上下限,随后进行校准步骤以优化这些区间,确保统计有效性(覆盖概率)和区分度(窄区间)。基准分析表明,DeepDeconUQ始终优于现有方法,在模拟和真实癌症数据集上均实现了高覆盖精度和紧密的预测区间。DeepDeconUQ对各种基因表达扰动的抗性进一步证明了其稳健性。DeepDeconUQ方法可在https://github.com/jiaweih14/DeepDeconUQ上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2940/12162100/c74ff1f08987/pcbi.1013133.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验