Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Bioinformatics. 2024 Sep 1;40(Suppl 2):ii120-ii127. doi: 10.1093/bioinformatics/btae400.
Learning cellular dynamics through reconstruction of the underlying cellular potential energy landscape (aka Waddington landscape) from time-series single-cell RNA sequencing (scRNA-seq) data is a current challenge. Prevailing data-driven computational methods can be hampered by the lack of physical principles to guide learning from complex data, resulting in reduced prediction accuracy and interpretability when applied to infer cell population dynamics.
Here, we propose PI-SDE, a physics-informed neural stochastic differential equation (SDE) framework that combines the Hamilton-Jacobi (HJ) equation and neural SDE to learn cellular dynamics. Grounded in potential energy theory of biological systems, PI-SDE integrates the principle of least action by enforcing the HJ equation when reconstructing cellular potential energy function. This approach not only facilitates accurate predictions, but also improves interpretability, especially in the reconstructed potential energy landscape. Through benchmarking on two real scRNA-seq datasets, we demonstrate the importance of incorporating the HJ regularization term in dynamic inference, especially in predicting gene expression at held-out time points. Meanwhile, the learned potential energy landscape provides biologically interpretable insights into the process of cell differentiation. Our framework enhances model performance, while maintaining robustness and stability.
PI-SDE software is available at https://github.com/QiJiang-QJ/PI-SDE.
通过从时间序列单细胞 RNA 测序 (scRNA-seq) 数据重建潜在的细胞势能景观(又名 Waddington 景观)来学习细胞动力学是当前的一个挑战。流行的数据驱动计算方法可能受到缺乏物理原理来指导从复杂数据中学习的限制,导致在应用于推断细胞群体动力学时,预测准确性和可解释性降低。
在这里,我们提出了 PI-SDE,这是一个物理信息神经随机微分方程 (SDE) 框架,它结合了哈密顿-雅可比 (HJ) 方程和神经 SDE 来学习细胞动力学。基于生物系统势能理论,PI-SDE 通过在重建细胞势能函数时施加 HJ 方程来整合最小作用原理。这种方法不仅可以实现准确的预测,还可以提高可解释性,特别是在重建的势能景观中。通过在两个真实的 scRNA-seq 数据集上进行基准测试,我们证明了在动态推理中包含 HJ 正则化项的重要性,特别是在预测保留时间点的基因表达时。同时,学习到的势能景观为细胞分化过程提供了生物学上可解释的见解。我们的框架提高了模型性能,同时保持了稳健性和稳定性。
PI-SDE 软件可在 https://github.com/QiJiang-QJ/PI-SDE 上获得。