Ahmad Waleed K M, Bedau Tillmann, Wang Yuan, Michels Sebastian, Rasokat Anna, Wolf Jürgen, Heldwein Matthias, Schallenberg Simon, Quaas Alexander, Büttner Reinhard, Tolkach Yuri
Institute of Pathology, University Hospital Cologne, Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany.
Institute of Pathology, University Hospital Cologne, Cologne, Germany.
Lung Cancer. 2025 Jul;205:108613. doi: 10.1016/j.lungcan.2025.108613. Epub 2025 Jun 1.
Lung cancer is the leading cause of cancer-related mortality worldwide, highlighting the importance of refining diagnostic modalities. This study's main focus is the development of a digital pathology, prognostic algorithm for fully automatized quantification of stroma-tumor ratio (STR) in patients with resectable non-small cell lung cancer (NSCLC).
The developed STR algorithm is built upon a powerful multi-class tissue segmentation algorithm that generates precise maps of the full tumor region. One retrospective exploration cohort of NSCLC patients (n = 902) and three validation cohorts (n = 784) of patients with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) were included to identify and validate optimal prognostic cut-offs and different risk stratification methods with regard to different clinical endpoints: overall survival (OS), cancer-specific survival (CSS) and progression-free survival (PFS).
For LUAD, we show that the minimal STR value for the whole case is decisive for prognostic evaluation. Different approaches (single STR cut-off, multiple STR cut-offs, using STR as a continuous parameter) allow for robust stratification of patients into prognostic risk groups, independent of the classical clinicopathological variables and conventional histological grading. For LUSC, STR may assist in identifying a small subset of patients with unfavorable prognosis (based on the maximum STR for the whole case), however, its prognostic impact varies between cohorts.
STR quantification in LUAD NSCLC subtype shows a promising role as a prognostic biomarker. It can be easily implemented in routine diagnostics and could be considered as a component of advanced prognostic systems in LUAD. Our results in LUSC cohorts suggest that STR quantification in its current implementation is of limited value in this subtype.
肺癌是全球癌症相关死亡的主要原因,凸显了完善诊断方式的重要性。本研究的主要重点是开发一种数字病理学预后算法,用于对可切除的非小细胞肺癌(NSCLC)患者的基质-肿瘤比率(STR)进行全自动定量分析。
所开发的STR算法基于一种强大的多类组织分割算法构建,该算法可生成完整肿瘤区域的精确图谱。纳入了一个NSCLC患者回顾性探索队列(n = 902)以及三个肺腺癌(LUAD)和肺鳞状细胞癌(LUSC)患者验证队列(n = 784),以识别和验证关于不同临床终点(总生存期(OS)、癌症特异性生存期(CSS)和无进展生存期(PFS))的最佳预后临界值和不同风险分层方法。
对于LUAD,我们表明整个病例的最小STR值对预后评估起决定性作用。不同方法(单一STR临界值、多个STR临界值、将STR用作连续参数)可将患者稳健地分层为预后风险组,独立于经典临床病理变量和传统组织学分级。对于LUSC,STR可能有助于识别一小部分预后不良的患者(基于整个病例的最大STR),然而,其预后影响在不同队列之间有所不同。
LUAD NSCLC亚型中的STR定量作为一种预后生物标志物显示出有前景的作用。它可轻松应用于常规诊断,并可被视为LUAD中先进预后系统的一个组成部分。我们在LUSC队列中的结果表明,目前实施的STR定量在该亚型中的价值有限。