Suppr超能文献

非小细胞肺癌间质-肿瘤比率定量预后算法的开发与临床验证

Development and clinical validation of a prognostic algorithm for stroma-tumor ratio quantification in non-small cell lung cancer.

作者信息

Ahmad Waleed K M, Bedau Tillmann, Wang Yuan, Michels Sebastian, Rasokat Anna, Wolf Jürgen, Heldwein Matthias, Schallenberg Simon, Quaas Alexander, Büttner Reinhard, Tolkach Yuri

机构信息

Institute of Pathology, University Hospital Cologne, Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany.

Institute of Pathology, University Hospital Cologne, Cologne, Germany.

出版信息

Lung Cancer. 2025 Jul;205:108613. doi: 10.1016/j.lungcan.2025.108613. Epub 2025 Jun 1.

Abstract

BACKGROUND AND AIM

Lung cancer is the leading cause of cancer-related mortality worldwide, highlighting the importance of refining diagnostic modalities. This study's main focus is the development of a digital pathology, prognostic algorithm for fully automatized quantification of stroma-tumor ratio (STR) in patients with resectable non-small cell lung cancer (NSCLC).

MATERIALS AND METHODS

The developed STR algorithm is built upon a powerful multi-class tissue segmentation algorithm that generates precise maps of the full tumor region. One retrospective exploration cohort of NSCLC patients (n = 902) and three validation cohorts (n = 784) of patients with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) were included to identify and validate optimal prognostic cut-offs and different risk stratification methods with regard to different clinical endpoints: overall survival (OS), cancer-specific survival (CSS) and progression-free survival (PFS).

RESULTS

For LUAD, we show that the minimal STR value for the whole case is decisive for prognostic evaluation. Different approaches (single STR cut-off, multiple STR cut-offs, using STR as a continuous parameter) allow for robust stratification of patients into prognostic risk groups, independent of the classical clinicopathological variables and conventional histological grading. For LUSC, STR may assist in identifying a small subset of patients with unfavorable prognosis (based on the maximum STR for the whole case), however, its prognostic impact varies between cohorts.

CONCLUSION

STR quantification in LUAD NSCLC subtype shows a promising role as a prognostic biomarker. It can be easily implemented in routine diagnostics and could be considered as a component of advanced prognostic systems in LUAD. Our results in LUSC cohorts suggest that STR quantification in its current implementation is of limited value in this subtype.

摘要

背景与目的

肺癌是全球癌症相关死亡的主要原因,凸显了完善诊断方式的重要性。本研究的主要重点是开发一种数字病理学预后算法,用于对可切除的非小细胞肺癌(NSCLC)患者的基质-肿瘤比率(STR)进行全自动定量分析。

材料与方法

所开发的STR算法基于一种强大的多类组织分割算法构建,该算法可生成完整肿瘤区域的精确图谱。纳入了一个NSCLC患者回顾性探索队列(n = 902)以及三个肺腺癌(LUAD)和肺鳞状细胞癌(LUSC)患者验证队列(n = 784),以识别和验证关于不同临床终点(总生存期(OS)、癌症特异性生存期(CSS)和无进展生存期(PFS))的最佳预后临界值和不同风险分层方法。

结果

对于LUAD,我们表明整个病例的最小STR值对预后评估起决定性作用。不同方法(单一STR临界值、多个STR临界值、将STR用作连续参数)可将患者稳健地分层为预后风险组,独立于经典临床病理变量和传统组织学分级。对于LUSC,STR可能有助于识别一小部分预后不良的患者(基于整个病例的最大STR),然而,其预后影响在不同队列之间有所不同。

结论

LUAD NSCLC亚型中的STR定量作为一种预后生物标志物显示出有前景的作用。它可轻松应用于常规诊断,并可被视为LUAD中先进预后系统的一个组成部分。我们在LUSC队列中的结果表明,目前实施的STR定量在该亚型中的价值有限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验