Suppr超能文献

用于从废旧手机印刷电路板中回收金属的半规模搅拌槽酶促生物浸出系统:工艺参数优化、预测建模和经济评估。

Semi-scale stirred tank enzymatic bioleaching system for metal recovery from PCBs of end-of-life mobile phones: Process parameter optimization, predictive modelling, and economic assessment.

作者信息

Trivedi Amber, Hait Subrata

机构信息

Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.

Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.

出版信息

Waste Manag. 2025 Aug 1;204:114916. doi: 10.1016/j.wasman.2025.114916. Epub 2025 Jun 3.

Abstract

Biocatalysts like enzymes have proven to be faster and efficient in metal bioleaching from printed circuit boards (PCBs) than microbe-mediated bioleaching. However, studies on enzymatic metal bioleaching from PCBs are mainly confined to the shake-flask level. Therefore, it is essential to scale-up the process in a semi-scale stirred tank reactor (STR) for commercial applicability. In this study, enzymatic bioleaching of metals from mobile phone PCBs was performed in a semi-scale STR (working volume: 5 L) with optimization and predictive modelling employing response surface methodology (RSM) and machine learning (ML) tools, i.e., support vector machine (SVM) and artificial neural network (ANN), respectively. Process variables, i.e., mixing speed (MS) (200-500 rpm) and pulp density (PD) (1-10 g/L) were optimized and content of glucose oxidase enzyme (300 U/L) and Fe ions (20 mM) was kept constant. Selective chemical precipitation was also performed for targeted metals recovery from bioleachate. Further, cost-benefit analysis (CBA) was conducted to assess the economic viability of the integrated technique. Although the 5 L reactor limits commercial-scale analysis, it lays the foundation for future scale-up and cost optimization. Maximum of 90% Cu, 95% Ni, 96% Pb, and 99% Zn were bioleached at optimal conditions, viz., MS: 395 rpm and PD: 5 g/L. ANN-based ML model (R > 0.99) more accurately predicted enzymatic metal bioleaching than the SVM. Chemical precipitation recovered > 98% of targeted metals. CBA showing a revenue of 0.0423 USD/kg PCB recycling with a payback period of about four years highlights the economic viability of the integrated technique at the semi-scale level.

摘要

事实证明,像酶这样的生物催化剂在从印刷电路板(PCB)中进行金属生物浸出方面比微生物介导的生物浸出更快且更高效。然而,关于从印刷电路板中进行酶促金属生物浸出的研究主要局限于摇瓶水平。因此,为了实现商业应用,在半规模搅拌槽反应器(STR)中扩大该工艺规模至关重要。在本研究中,在半规模STR(工作体积:5升)中对手机印刷电路板中的金属进行酶促生物浸出,并分别采用响应面法(RSM)和机器学习(ML)工具,即支持向量机(SVM)和人工神经网络(ANN)进行优化和预测建模。对工艺变量,即搅拌速度(MS)(200 - 500转/分钟)和矿浆密度(PD)(1 - 10克/升)进行了优化,葡萄糖氧化酶(300单位/升)和铁离子(20毫摩尔)的含量保持不变。还进行了选择性化学沉淀以从生物浸出液中回收目标金属。此外,进行了成本效益分析(CBA)以评估该集成技术的经济可行性。尽管5升反应器限制了商业规模分析,但它为未来的扩大规模和成本优化奠定了基础。在最佳条件下,即MS:395转/分钟和PD:5克/升时,最大生物浸出率为90%的铜、95%的镍、96%的铅和99%的锌。基于人工神经网络的机器学习模型(R > 0.99)比支持向量机更准确地预测了酶促金属生物浸出。化学沉淀回收了超过98%的目标金属。CBA显示,每千克印刷电路板回收的收入为0.0423美元,投资回收期约为四年,突出了该集成技术在半规模水平上的经济可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验