Xu Zhongshi, Wang Anli, Hu Jiaqiang, Li Ze, Zheng Yuchen, Liu Yi, Xiang Qingqing, Wang Jiye, Yao Weixuan, Ding Chengrong, Zhou Ying
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310053, China.
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
Environ Pollut. 2025 Sep 15;381:126591. doi: 10.1016/j.envpol.2025.126591. Epub 2025 Jun 2.
Bisphenol A (BPA), a ubiquitous chemical compound in plastics and resins, is a pervasive environmental pollutant posing significant health risks to humans and animals. Despite evidence linking BPA exposure to neuronal damage and cognitive impairments, its underlying mechanisms and core targets remain poorly understood. Therefore, this study employed an integrated metabolomics and network toxicology strategy to elucidate the neurotoxic mechanisms of BPA. Zebrafish embryos were subjected to BPA exposure (0.05, 0.5, 1, and 2 mg/L) from 6 h post-fertilization (hpf) to 6 days post-fertilization (dpf). Neurotoxic effects were assessed via developmental and morphological observations, behavioral analyses, metabolomics profiling, and transcriptional examinations. BPA exposure disrupted zebrafish larval development, suppressed central nervous system (CNS) neurogenesis, altered cardiac function, and induced significant neurobehavioral deficits. In addition, metabolomics analysis identified disruptions in glutamate metabolism as a key contributor to BPA-induced neurotoxicity. Utilizing databases such as comparative toxicogenomics database (CTD), ChEMBL, and GeneCards, we identified potential neurotoxicity-associated targets, further refined through STRING and Cytoscape analyses. Enrichment analysis using Metascape and molecular docking via Autodock revealed strong binding affinities between BPA and core targets, including PRKACA, ESR2, MMP9, PTGS2, DRD1, AR, and ESR1. Moreover, the BPA-ESR2 interaction and BPA-PRKACA interaction were further validated via SPR assay. This study offers a comprehensive understanding of BPA-induced neurotoxicity through advanced metabolomics and network toxicology approaches, offering novel and valuable insights into its toxicity mechanisms and guiding the development of potential therapeutic strategies.
双酚A(BPA)是塑料和树脂中普遍存在的一种化合物,是一种广泛存在的环境污染物,对人类和动物健康构成重大风险。尽管有证据表明接触双酚A与神经元损伤和认知障碍有关,但其潜在机制和核心靶点仍知之甚少。因此,本研究采用综合代谢组学和网络毒理学策略来阐明双酚A的神经毒性机制。斑马鱼胚胎在受精后6小时(hpf)至受精后6天(dpf)期间暴露于双酚A(0.05、0.5、1和2mg/L)。通过发育和形态学观察、行为分析、代谢组学分析和转录检查来评估神经毒性作用。双酚A暴露破坏了斑马鱼幼体的发育,抑制了中枢神经系统(CNS)的神经发生,改变了心脏功能,并导致了明显的神经行为缺陷。此外,代谢组学分析确定谷氨酸代谢紊乱是双酚A诱导神经毒性的关键因素。利用比较毒理基因组学数据库(CTD)、ChEMBL和GeneCards等数据库,我们确定了潜在的神经毒性相关靶点,并通过STRING和Cytoscape分析进一步优化。使用Metascape进行的富集分析和通过Autodock进行的分子对接显示双酚A与核心靶点之间具有很强的结合亲和力,这些核心靶点包括PRKACA、ESR2、MMP9、PTGS2、DRD1、AR和ESR1。此外,通过表面等离子体共振(SPR)测定进一步验证了双酚A与ESR2的相互作用以及双酚A与PRKACA的相互作用。本研究通过先进的代谢组学和网络毒理学方法全面了解了双酚A诱导的神经毒性,为其毒性机制提供了新颖而有价值的见解,并指导了潜在治疗策略的开发。