Suppr超能文献

食品工业自动化中的微型光谱学与人工智能驱动探头

Miniaturized spectroscopy and AI-driven probes in food industry automation.

作者信息

Ramachandran Rani Puthukulangara, Clément Alain, Erkinbaev Chyngyz

机构信息

Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Canada.

Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Canada.

出版信息

Food Res Int. 2025 Aug;214:116646. doi: 10.1016/j.foodres.2025.116646. Epub 2025 May 13.

Abstract

Spectroscopy is a rapidly advancing analytical technique, which is increasingly employed in the food industry as a non-destructive and rapid quality control tool. Based on spectral analysis and developed multivariate predictive models this technique is suitable for online and real-time monitoring of various food products. Integrated into in-line, on-line, or at-line systems, spectroscopy enables the monitoring of critical quality attributes, nutritional, bioactive and specific analyte molecules for enhancing product consistency and safety. Recent developments in spectroscopic instrumentation, coupled with machine learning algorithms, have further augmented its potential as a transformative technology in the automation and optimization of food production systems. Although it shows great potential for such applications there are still challenges in successful integration of spectroscopic techniques into food processing facilities. This could be done by system miniaturization and artificial intelligence modeling. In this review, the past and current knowledge of miniaturized spectroscopy have been summarized and presented. Emphasis was placed on an overview of inline miniaturized spectroscopy, design and architecture, application in food industry including process monitoring and control, advantages and limitations such as cost, models'' transferability, and instrument variations.

摘要

光谱学是一种快速发展的分析技术,在食品工业中越来越多地被用作一种无损且快速的质量控制工具。基于光谱分析并开发多变量预测模型,该技术适用于对各种食品进行在线和实时监测。光谱学集成到在线、联机或在线下系统中,能够监测关键质量属性、营养成分、生物活性物质和特定分析物分子,以提高产品的一致性和安全性。光谱仪器的最新进展,再加上机器学习算法,进一步增强了其作为食品生产系统自动化和优化中的变革性技术的潜力。尽管它在此类应用中显示出巨大潜力,但将光谱技术成功集成到食品加工设施中仍存在挑战。这可以通过系统小型化和人工智能建模来实现。在这篇综述中,总结并介绍了关于小型化光谱学的过去和当前知识。重点概述了在线小型化光谱学、设计与架构、在食品工业中的应用,包括过程监测与控制、成本、模型可转移性和仪器差异等优点和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验