Zhang Lu, Boom Remko M, Ma Yizhou
Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen, The Netherlands; email:
Annu Rev Food Sci Technol. 2025 Apr;16(1):25-37. doi: 10.1146/annurev-food-111523-122039.
Industrial food processing is rapidly transforming into automation and digitalization. Automated food processing systems adapt to variations in raw materials and product quality requirements. Implementing automated processing systems can potentially improve the sustainability of our food systems by improving productivity while reducing environmental impacts. Nevertheless, the adoption of automated food processing systems is still relatively low. In this review, we discuss the concept of automated food processing and summarize the recent advances in applications of machine learning technologies to enable automated food processing. Machine learning can find its applications in formulation development, process control, and product quality assessment. We share our vision on the potential of automated food processing systems to adapt to complex raw materials, mass customization, personalized nutrition, and human-machine interaction. Finally, we pinpoint relevant research questions and stress that future research on automated food processing requires multidisciplinary approaches.
工业食品加工正在迅速向自动化和数字化转变。自动化食品加工系统能够适应原材料的变化以及产品质量要求。实施自动化加工系统有可能通过提高生产率同时减少环境影响来提升我们食品系统的可持续性。然而,自动化食品加工系统的采用率仍然相对较低。在本综述中,我们讨论了自动化食品加工的概念,并总结了机器学习技术在实现自动化食品加工应用方面的最新进展。机器学习可应用于配方开发、过程控制和产品质量评估。我们分享了关于自动化食品加工系统在适应复杂原材料、大规模定制、个性化营养以及人机交互方面潜力的展望。最后,我们明确了相关研究问题,并强调未来对自动化食品加工的研究需要多学科方法。