Suppr超能文献

基于影像组学的原发性中枢神经系统淋巴瘤与孤立性脑转移瘤的鉴别:使用对比增强T1加权成像的回顾性机器学习研究

Radiomics-Based Differentiation of Primary Central Nervous System Lymphoma and Solitary Brain Metastasis Using Contrast-Enhanced T1-Weighted Imaging: A Retrospective Machine Learning Study.

作者信息

Xia Xueming, Qiu Jiajun, Tan Qiaoyue, Du Wei, Gou Qiheng

机构信息

Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China (X.X., Q.G.).

Division of Head & Neck Tumor Multimodality Treatment and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China (J.Q.).

出版信息

Acad Radiol. 2025 Sep;32(9):5401-5412. doi: 10.1016/j.acra.2025.05.043. Epub 2025 Jun 4.

Abstract

PURPOSE

To develop and evaluate radiomics-based models using contrast-enhanced T1-weighted imaging (CE-T1WI) for the non-invasive differentiation of primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (SBM), aiming to improve diagnostic accuracy and support clinical decision-making.

METHODS

This retrospective study included a cohort of 324 patients pathologically diagnosed with PCNSL (n=115) or SBM (n=209) between January 2014 and December 2024. Tumor regions were manually segmented on CE-T1WI, and a comprehensive set of 1561 radiomic features was extracted. To identify the most important features, a two-step approach for feature selection was utilized, which involved the use of least absolute shrinkage and selection operator (LASSO) regression. Multiple machine learning classifiers were trained and validated to assess diagnostic performance. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, and specificity. The effectiveness of the radiomics-based models was further assessed using decision curve analysis, which incorporated a risk threshold of 0.5 to balance both false positives and false negatives.

RESULTS

23 features were identified through LASSO regression. All classifiers demonstrated robust performance in terms of area under the curve (AUC) and accuracy, with 15 out of 20 classifiers achieving AUC values exceeding 0.9. In the 10-fold cross-validation, the artificial neural network (ANN) classifier achieved the highest AUC of 0.9305, followed by the support vector machine with polynomial kernels (SVMPOLY) classifier at 0.9226. Notably, the independent test revealed that the support vector machine with radial basis function (SVMRBF) classifier performed best, with an AUC of 0.9310 and the highest accuracy of 0.8780. The selected models-SVMRBF, SVMPOLY, ensemble learning with LDA (ELDA), ANN, random forest (RF), and grading boost with random undersampling boosting (GBRUSB)-all showed significant clinical utility, with their standardized net benefits (sNBs) surpassing 0.6. These results underline the potential of the radiomics-based models in reliably distinguishing PCNSL from SBM.

CONCLUSION

The application of radiomic-driven models based on CE-T1WI has demonstrated encouraging potential for accurately distinguishing between PCNSL and SBM. The SVMRBF classifier showed the greatest diagnostic efficacy of all the classifiers tested, indicating its potential clinical utility in differential diagnosis.

摘要

目的

利用对比增强T1加权成像(CE-T1WI)开发并评估基于放射组学的模型,用于原发性中枢神经系统淋巴瘤(PCNSL)和孤立性脑转移瘤(SBM)的无创鉴别诊断,旨在提高诊断准确性并支持临床决策。

方法

这项回顾性研究纳入了2014年1月至2024年12月期间324例经病理诊断为PCNSL(n=115)或SBM(n=209)的患者队列。在CE-T1WI上手动分割肿瘤区域,并提取了1561个全面的放射组学特征。为了识别最重要的特征,采用了两步特征选择方法,其中涉及使用最小绝对收缩和选择算子(LASSO)回归。训练并验证了多个机器学习分类器以评估诊断性能。使用曲线下面积(AUC)、准确性、敏感性和特异性评估模型性能。使用决策曲线分析进一步评估基于放射组学的模型的有效性,该分析纳入了0.5的风险阈值以平衡假阳性和假阴性。

结果

通过LASSO回归识别出23个特征。所有分类器在曲线下面积(AUC)和准确性方面均表现出稳健的性能,20个分类器中有15个的AUC值超过0.9。在10折交叉验证中,人工神经网络(ANN)分类器的AUC最高,为0.9305,其次是多项式核支持向量机(SVMPOLY)分类器,为0.9226。值得注意的是,独立测试显示,径向基函数支持向量机(SVMRBF)分类器表现最佳,AUC为0.9310,最高准确率为0.8780。所选模型——SVMRBF、SVMPOLY、线性判别分析集成学习(ELDA)、ANN、随机森林(RF)和随机欠采样增强梯度提升(GBRUSB)——均显示出显著的临床实用性,其标准化净效益(sNBs)超过0.6。这些结果强调了基于放射组学的模型在可靠区分PCNSL和SBM方面的潜力。

结论

基于CE-T1WI的放射组学驱动模型的应用在准确区分PCNSL和SBM方面显示出令人鼓舞的潜力。SVMRBF分类器在所有测试的分类器中显示出最大的诊断效能,表明其在鉴别诊断中的潜在临床实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验