Suppr超能文献

通过协同的焓-熵效应,羟甲磺酸盐的形成在气-水界面处加速。

Hydroxymethanesulfonate formation accelerated at the air-water interface by synergistic enthalpy-entropy effects.

作者信息

Li Jifan, Tang Weiqiang, Zhu Jiabao, Yang Jinrong, He Xiao

机构信息

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.

出版信息

Nat Commun. 2025 Jun 4;16(1):5187. doi: 10.1038/s41467-025-59712-3.

Abstract

Hydroxymethanesulfonate is a key organosulfate linked to severe fine-particle pollution in fog and clouds, yet its rapid formation mechanism at the air-water interface remains elusive. Here, using metadynamics-biased ab initio molecular dynamics simulations, high-level quantum chemical calculations and reaction density functional theory, we reveal that synergistic enthalpy-entropy effects govern the nucleophilic addition between bisulfite and formaldehyde. Compared to the gaseous reaction, the aqueous reaction faces a ~5.0 kcal/mol water reorganization barrier, partly offset by polarization effects. Ab initio molecular dynamics simulations show hydrogen bonding networks facilitate proton transfer via the Grotthuss mechanism, reducing activation entropy by ~5.5 kcal/mol. At the interface, partial solvation and restricted formaldehyde motion lower the enthalpy and configurational entropy by ~1.0 and ~0.9 kcal/mol, respectively, alongside a 1.9 kcal/mol electric field effect. These combined effects enhance the interfacial reaction rate by two orders of magnitude, offering insights into heterogeneous chemistry and strategies for winter haze mitigation.

摘要

羟甲基磺酸盐是一种与雾和云中严重的细颗粒污染相关的关键有机硫酸盐,但其在气-水界面的快速形成机制仍不清楚。在此,我们使用元动力学偏置的从头算分子动力学模拟、高水平量子化学计算和反应密度泛函理论,揭示了协同的焓-熵效应控制着亚硫酸氢盐与甲醛之间的亲核加成反应。与气相反应相比,水相反应面临约5.0千卡/摩尔的水重组能垒,部分被极化效应抵消。从头算分子动力学模拟表明,氢键网络通过Grotthuss机制促进质子转移,使活化熵降低约5.5千卡/摩尔。在界面处,部分溶剂化和受限的甲醛运动分别使焓和构型熵降低约1.0千卡/摩尔和0.9千卡/摩尔,同时还有1.9千卡/摩尔的电场效应。这些综合效应使界面反应速率提高了两个数量级,为非均相化学和冬季雾霾缓解策略提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32a/12137664/0c55e42bf0ae/41467_2025_59712_Fig1_HTML.jpg

相似文献

2
Mechanistic Insights into the Reactive Uptake of Bromine Nitrate at the Air-Water Interface: Interplay between Halogen Bonding and Solvation.
J Phys Chem Lett. 2025 Mar 27;16(12):2957-2964. doi: 10.1021/acs.jpclett.5c00497. Epub 2025 Mar 14.
3
Mechanistic Insights into the Reactive Uptake of Chlorine Nitrate at the Air-Water Interface.
J Am Chem Soc. 2023 Jan 18;145(2):944-952. doi: 10.1021/jacs.2c09837. Epub 2023 Jan 3.
4
Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO with Aqueous HSO/SO.
J Am Chem Soc. 2019 Dec 11;141(49):19312-19320. doi: 10.1021/jacs.9b08503. Epub 2019 Nov 25.
5
Entropy-driven difference in interfacial water reactivity between slab and nanodroplet.
Nat Commun. 2025 Jun 5;16(1):5250. doi: 10.1038/s41467-025-60298-z.
6
Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations.
Phys Chem Chem Phys. 2016 Nov 21;18(43):29756-29770. doi: 10.1039/c6cp06071d. Epub 2016 Oct 25.
7
Thermodynamic and ab initio analysis of the controversial enthalpy of formation of formaldehyde.
Chemphyschem. 2006 May 12;7(5):1119-26. doi: 10.1002/cphc.200500667.
9
Nature of Excess Hydrated Proton at the Water-Air Interface.
J Am Chem Soc. 2020 Jan 15;142(2):945-952. doi: 10.1021/jacs.9b10807. Epub 2020 Jan 3.

本文引用的文献

1
Positive Feedback between Partitioning of Carbonyl Compounds and Particulate Sulfur Formation during Haze Episodes.
Environ Sci Technol. 2024 Dec 3;58(48):21286-21294. doi: 10.1021/acs.est.4c07278. Epub 2024 Nov 11.
2
Direct observation of the complex S(IV) equilibria at the liquid-vapor interface.
Nat Commun. 2024 Oct 18;15(1):8987. doi: 10.1038/s41467-024-53186-5.
3
Enhanced aqueous formation and neutralization of fine atmospheric particles driven by extreme cold.
Sci Adv. 2024 Sep 6;10(36):eado4373. doi: 10.1126/sciadv.ado4373. Epub 2024 Sep 4.
4
A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn.
J Chem Phys. 2024 Aug 28;161(8). doi: 10.1063/5.0216272.
5
Hydroxymethanesulfonate and Sulfur(IV) in Fairbanks Winter During the ALPACA Study.
ACS EST Air. 2024 May 15;1(7):646-659. doi: 10.1021/acsestair.4c00012. eCollection 2024 Jul 12.
6
Molecular Mechanism for Converting Carbon Dioxide Surrounding Water Microdroplets Containing 1,2,3-Triazole to Formic Acid.
J Am Chem Soc. 2024 Mar 27;146(12):8576-8584. doi: 10.1021/jacs.4c00529. Epub 2024 Mar 15.
7
What defines electrophilicity in carbonyl compounds.
Chem Sci. 2024 Feb 6;15(11):3980-3987. doi: 10.1039/d3sc05595g. eCollection 2024 Mar 13.
8
Overview of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) Field Experiment.
ACS EST Air. 2024 Feb 21;1(3):200-222. doi: 10.1021/acsestair.3c00076. eCollection 2024 Mar 8.
10
Harnessing the High Interfacial Electric Fields on Water Microdroplets to Accelerate Menshutkin Reactions.
J Am Chem Soc. 2023 Dec 6;145(48):26003-26008. doi: 10.1021/jacs.3c11650. Epub 2023 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验