Chen Shiwei, Zhu Jiabao, Li Jifan, Guo Pan, Yang Jinrong, He Xiao
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd, Shanghai, 200062, China.
Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China.
Nat Commun. 2025 Jun 5;16(1):5250. doi: 10.1038/s41467-025-60298-z.
Interfacial water activity plays a critical role in governing chemical reactivity and catalytic efficiency, yet a quantitative understanding of how hydrogen-bond (H-bond) network structure influences this reactivity remains limited. Herein, we employ ab initio molecular metadynamics simulations to delineate the relationship between the H-bond network and the reactivity of interfacial water molecules at the slab and nanodroplet systems. Interfacial water at nanodroplets, characterized by microscopic inhomogeneity, tends to adopt a donor-acceptor dimer configuration, in contrast to the more homogeneous H-bond network at the slab. This disparity in local structure, corroborated by the quantified differences in solvation configurational entropy, results in a reduction of the reaction free energy barrier by 1-2 kcal·mol⁻ at the slab interface, corresponding to an order-of-magnitude enhancement in reaction rate. These results provide a fresh perspective to understand the interfacial water reactivity and highlight the critical role of H-bond network in optimizing catalytic performance.
界面水活性在控制化学反应性和催化效率方面起着关键作用,然而,对于氢键(H键)网络结构如何影响这种反应性的定量理解仍然有限。在此,我们采用从头算分子元动力学模拟来描述平板和纳米液滴系统中H键网络与界面水分子反应性之间的关系。纳米液滴处的界面水具有微观不均匀性,与平板处更均匀的H键网络相比,倾向于采用供体-受体二聚体构型。这种局部结构的差异,通过溶剂化构型熵的量化差异得到证实,导致平板界面处反应自由能垒降低1-2 kcal·mol⁻¹,对应于反应速率提高一个数量级。这些结果为理解界面水反应性提供了新的视角,并突出了H键网络在优化催化性能中的关键作用。