Mallamaci Gianmarco, Faysal Abdullah Al, Guinault Alain, Gervais Matthieu, Roland Sébastien, Lee Patrick C, Sollogoub Cyrille
Laboratoire PIMM, Arts et Métiers Institute of Technology, Cnam, CNRS, 151 boulevard de l'Hôpital, Paris 75013, France.
Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):36182-36191. doi: 10.1021/acsami.5c04726. Epub 2025 Jun 4.
Poly(vinyl alcohol) (PVA), while offering exceptional gas barrier performance, faces significant challenges due to its extensive hydrogen bonding network. This structure limits its mechanical flexibility and creates processing difficulties, particularly during thermal melt processing, as the temperature window between melting and decomposition is narrow. To address these limitations, this study explores the multifunctional properties of nanostructured multilayer films composed of PVA and ethylene vinyl alcohol copolymer (EVOH). By engineering nanometric layers within the multilayer structure, we preserved the outstanding oxygen and water vapor barrier capabilities of the materials while enhancing the flexibility of the films. The findings reveal that reducing individual layer thicknesses to the nanoscale improves EVOH macromolecular mobility, leading to notable changes in thermal behavior. The formation of more regular crystalline structures and the complex interplay at the interfaces between PVA and EVOH layers significantly impedes the diffusion of small molecules across the film. Furthermore, mechanical testing demonstrates that increasing the number of layers enhances the ductility of the films, an effect attributed to the expanded interfacial area and a lower degree of crystallinity. These advancements highlight the potential for optimizing multilayer film structures to balance the barrier and mechanical performance.
聚乙烯醇(PVA)虽然具有出色的气体阻隔性能,但由于其广泛的氢键网络而面临重大挑战。这种结构限制了其机械柔韧性,并带来了加工困难,特别是在热熔加工过程中,因为熔化和分解之间的温度窗口很窄。为了解决这些限制,本研究探索了由PVA和乙烯-乙烯醇共聚物(EVOH)组成的纳米结构多层膜的多功能特性。通过在多层结构中设计纳米级层,我们在保持材料出色的氧气和水蒸气阻隔能力的同时,提高了薄膜的柔韧性。研究结果表明,将单个层厚度减小到纳米级可提高EVOH的大分子迁移率,从而导致热行为发生显著变化。更规则的晶体结构的形成以及PVA和EVOH层之间界面处的复杂相互作用显著阻碍了小分子在薄膜中的扩散。此外,力学测试表明,增加层数可提高薄膜的延展性,这一效果归因于扩大的界面面积和较低的结晶度。这些进展突出了优化多层膜结构以平衡阻隔性能和机械性能的潜力。