Suppr超能文献

scGANSL:用于scRNA-seq数据聚类的带子空间学习的图注意力网络

scGANSL: Graph Attention Network with Subspace Learning for scRNA-seq Data Clustering.

作者信息

Shu Zhenqiu, Ren Yixuan, Long Qinghan, Wang Hongbin, Yu Zhengtao

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China.

出版信息

J Chem Inf Model. 2025 Jun 23;65(12):6367-6381. doi: 10.1021/acs.jcim.5c00731. Epub 2025 Jun 5.

Abstract

Single-cell RNA sequencing (scRNA-seq) has become a crucial technology for analyzing cellular diversity at the single-cell level. Cell clustering is crucial in scRNA-seq data analysis as it accurately identifies distinct cell types and uncovers potential subpopulations. However, most existing scRNA-seq methods rely on a single view for analysis, leading to an incomplete interpretation of the scRNA-seq data. Furthermore, the high dimensionality of the scRNA-seq data and the inevitable noise pose significant challenges for clustering tasks. To address these challenges, in this study, we introduce a novel clustering method, called graph attention network with subspace learning (scGANSL), for scRNA-seq data clustering. Specifically, the proposed scGANSL method first constructs two views using highly variable genes (HVGs) screening and principal component analysis (PCA). They are then individually fed into a multiview shared graph autoencoder, where clustering labels guide the learning of latent representations and the coefficient matrix. Furthermore, the proposed method integrates a zero-inflated negative binomial (ZINB) model into a self-supervised graph attention autoencoder to learn latent representations more effectively. To preserve both local and global structures of scRNA-seq data in the latent representation space, we introduce a local learning and self-expression strategy to guide model training. Experimental results across various scRNA-seq data sets demonstrate that the proposed scGANSL model significantly outperforms other state-of-the-art scRNA-seq data clustering methods.

摘要

单细胞RNA测序(scRNA-seq)已成为在单细胞水平分析细胞多样性的关键技术。细胞聚类在scRNA-seq数据分析中至关重要,因为它能准确识别不同的细胞类型并揭示潜在的亚群。然而,大多数现有的scRNA-seq方法依赖单一视角进行分析,导致对scRNA-seq数据的解释不完整。此外,scRNA-seq数据的高维度和不可避免的噪声给聚类任务带来了重大挑战。为应对这些挑战,在本研究中,我们引入了一种名为带子空间学习的图注意力网络(scGANSL)的新型聚类方法,用于scRNA-seq数据聚类。具体而言,所提出的scGANSL方法首先使用高变基因(HVG)筛选和主成分分析(PCA)构建两个视角。然后将它们分别输入到一个多视角共享图自动编码器中,其中聚类标签指导潜在表示和系数矩阵的学习。此外,所提出的方法将零膨胀负二项式(ZINB)模型集成到一个自监督图注意力自动编码器中,以更有效地学习潜在表示。为了在潜在表示空间中保留scRNA-seq数据的局部和全局结构,我们引入了一种局部学习和自表达策略来指导模型训练。跨各种scRNA-seq数据集的实验结果表明,所提出的scGANSL模型显著优于其他现有的scRNA-seq数据聚类方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验