Kim Han-Kyul, Fukazawa Ayumi, Smith Scott A, Mizuno Masaki, Rothermel Beverly A, Fujikawa Teppei, Galvan Marco, Gautron Laurent, Pastor Johanne V, Carroll Isabelle J, Moe Orson W, Vongpatanasin Wanpen
Departments of Internal Medicine-Cardiology Division (H.-K.K., B.A.R., W.V.), University of Texas Southwestern Medical Center, Dallas.
Applied Clinical Research (H.-K.K., A.F., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.
Circulation. 2025 Aug 19;152(7):450-464. doi: 10.1161/CIRCULATIONAHA.124.071605. Epub 2025 Jun 5.
Recent studies have highlighted the deleterious role of high phosphate intake in hypertension via sympathetic overactivation, yet the underlying mechanisms remain unclear. Dietary phosphate loading triggers physiologic release of FGF23 (fibroblast growth factor-23) from the bone to maintain phosphate homeostasis. Both FGF23 and FGF receptors (FGFRs) are present in the central nervous system, but their role in neural control of blood pressure during phosphate loading is unknown. We investigated central FGF23/FGFR signaling in high-phosphate diet-induced sympathetic dysregulation of blood pressure in rats.
FGF23 protein levels were measured by immunoprecipitation, immunoblotting, and immunohistochemistry. FGF23 translocation into the brain was determined by injecting infrared-labeled FGF23 intravenously into anesthetized Sprague-Dawley rats. Mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) responses to hindlimb muscle contraction were measured in decerebrate Sprague-Dawley rats treated with either a normal 0.6% phosphate diet (NP) or a high 1.2% phosphate diet (HP) for 12 weeks before and after intracerebroventricular (ICV) administration of FGFR signaling inhibitors.
Excess phosphate intake significantly increased FGF23 protein levels in the brainstem (HP versus NP, =0.009) and cerebrospinal fluid (HP versus NP, <0.001). Peripheral injection of infrared-labeled FGF23 showed clear entry into the choroid plexus and medulla oblongata. ICV administration of PD173074, a pan-FGFR(1-4) inhibitor, significantly attenuated the heightened RSNA (Δ=84±53 versus 32±25% [<0.0001]) and MAP (Δ=35±14 versus 9±7 mm Hg [<0.0001]) responses to muscle contraction in HP animals, but did not affect the RSNA and MAP responses during stimulation in NP animals (ΔRSNA=40±29 versus 30±22% and ΔMAP=18±13 versus 13±9 mm Hg before versus after ICV injection). ICV injection of BLU9931, a relatively selective FGFR4 inhibitor, also decreased the responses in HP rats only (∆RSNA=112±70 versus 65±46% [=0.006] and ∆MAP=41±14 versus 20±14 mm Hg [<0.0001] before versus after ICV injection). However, ICV administration of AZD4547, a FGFR1-3 inhibitor, and C-terminal FGF23 peptide, a competitive inhibitor of FGF23/FGFR/α-Klotho complex formation, did not alter the responses in either NP or HP animals.
Our data reveal a novel pathophysiologic paradigm of high-phosphate diet-induced sympathoexcitation and hypertension by FGF23 crossing into the brain, possibly acting via FGFR4.
近期研究强调了高磷摄入通过交感神经过度激活在高血压中所起的有害作用,但其潜在机制仍不清楚。饮食中磷负荷会触发成纤维细胞生长因子23(FGF23)从骨骼的生理性释放,以维持磷稳态。FGF23和成纤维细胞生长因子受体(FGFRs)均存在于中枢神经系统中,但它们在磷负荷期间对血压的神经控制中的作用尚不清楚。我们研究了高磷饮食诱导的大鼠交感神经对血压调节异常中中枢FGF23/FGFR信号传导情况。
通过免疫沉淀、免疫印迹和免疫组织化学测定FGF23蛋白水平。通过将红外标记的FGF23静脉注射到麻醉的Sprague-Dawley大鼠体内来确定FGF23向脑内的转运。在脑室内(ICV)给予FGFR信号抑制剂之前和之后,测量接受正常0.6%磷饮食(NP)或高1.2%磷饮食(HP)12周的去大脑Sprague-Dawley大鼠对后肢肌肉收缩的平均动脉压(MAP)和肾交感神经活动(RSNA)反应。
过量的磷摄入显著增加了脑干(HP组与NP组相比,P = 0.009)和脑脊液(HP组与NP组相比,P < 0.001)中的FGF23蛋白水平。外周注射红外标记的FGF23显示其可清晰进入脉络丛和延髓。ICV给予泛FGFR(1 - 4)抑制剂PD173074可显著减弱HP组动物对肌肉收缩时增强的RSNA(变化量 = 84±53% 对32±25% [P < 0.0001])和MAP(变化量 = 35±14 mmHg对9±7 mmHg [P < 0.0001])反应,但不影响NP组动物在刺激期间的RSNA和MAP反应(ICV注射前后,RSNA变化量 = 40±29% 对30±22%,MAP变化量 = 18±13 mmHg对13±9 mmHg)。ICV注射相对选择性的FGFR4抑制剂BLU9931也仅降低了HP组大鼠的反应(ICV注射前后,RSNA变化量 = 112±70% 对65±46% [P = 0.006],MAP变化量 = 41±14 mmHg对]20±14 mmHg [P < 0.0001])。然而,ICV给予FGFR1 - 3抑制剂AZD4547和FGF23/FGFR/α-klotho复合物形成的竞争性抑制剂C末端FGF23肽,在NP组或HP组动物中均未改变反应。
我们的数据揭示了一种新的病理生理模式,即高磷饮食通过FGF23进入脑内,可能经由FGFR4作用,诱导交感神经兴奋和高血压。