Terán-Bustamante Antonia, Martínez-Velasco Antonieta, Leyva-Hernández Sandra Nelly
Universidad Panamericana, Facultad de Ciencias Económicas y Empresariales, Ciudad de México, Mexico.
Facultad de Ingeniería, Universidad Panamericana, Ciudad de México, Mexico.
Front Artif Intell. 2025 May 21;8:1570617. doi: 10.3389/frai.2025.1570617. eCollection 2025.
Knowledge management is essential to ensure the sustainability of rural communities and small producers since it generates value for innovation, productivity, and competitiveness. The aim of this study is to identify relevant factors for adequate decision-making in managing knowledge in the Mexican mezcal industry and its impact on developing rural communities and small producers - mezcaleros. For this purpose, a decision-making model for managing scientific and ancestral knowledge is created to support links with universities, research centers, and rural communities to accelerate innovation and competitiveness in this sector.
The analysis methods were carried out through decision-making, machine-learning techniques, and fuzzy logic.
The Bayesian Network model suggests that the preceding variables to optimize the Mezcaleros Knowledge Management are the Mezcaleros Indigenous community, the Denomination of Origin, Scientific and Ancestral Knowledge, Waste Management and Use, and .
This knowledge management model aims to guide small producers to be more productive and competitive through the support of a facilitator.
知识管理对于确保农村社区和小生产者的可持续发展至关重要,因为它能为创新、生产力和竞争力创造价值。本研究的目的是确定墨西哥龙舌兰酒行业知识管理中进行充分决策的相关因素,及其对农村社区和小生产者(龙舌兰酒酿造者)发展的影响。为此,创建了一个管理科学知识和祖传知识的决策模型,以支持与大学、研究中心和农村社区的联系,从而加速该行业的创新和竞争力。
分析方法通过决策、机器学习技术和模糊逻辑来实施。
贝叶斯网络模型表明,优化龙舌兰酒酿造者知识管理的前置变量是龙舌兰酒酿造者土著社区、原产地名称、科学知识和祖传知识、废物管理与利用等。
该知识管理模型旨在通过促进者的支持,引导小生产者提高生产力和竞争力。