Zhang Xiaojun, Liu Shiming, Wu Peng, Xu Wanying, Yang Dingyi, Ming Yuqing, Xiao Shenghua, Wang Weiran, Ma Jun, Nie Xinhui, Gao Zhan, Lv Junyuan, Wu Fei, Yang Zhaoguang, Zheng Baoxin, Du Ping, Wang Jiangmei, Ding Hao, Kong Jie, Aierxi Alifu, Yu Yu, Gao Wei, Lin Zhongxu, You Chunyuan, Lindsey Keith, Štajner Nataša, Wang Maojun, Wu Jiahe, Jin Shuangxia, Zhang Xianlong, Zhu Longfu
National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan China.
Hubei Hongshan Laboratory Wuhan China.
Imeta. 2025 Apr 11;4(3):e70029. doi: 10.1002/imt2.70029. eCollection 2025 Jun.
Investigating the genetic regulatory mechanisms underlying complex traits forms the foundation for crop improvement. Verticillium wilt (VW), caused by e (), is one of the most devastating diseases affecting crop production worldwide. However, the genetic basis underlying crop resistance to remains largely obscure, hindering progress in the genomic selection for VW resistance breeding. Here, we unraveled the genetic architectures and regulatory landscape of VW resistance in cotton by combining genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) using 1152 transcriptomes derived from 290 cotton accessions. We identified 10 reliable quantitative trait loci (QTLs) associated with VW resistance across multiple environments. These QTLs showed a pyramiding resistance effect and exhibited promising efficacy in the genomic prediction of cotton's VW resistance supported by an F population. Moreover, trace analysis of these elite alleles revealed a notably increased utilization of Lsnp1, Lsnp4, Lsnp5, Lsnp8, and Lsnp9, which potentially contribute to the improvement of VW resistance in Chinese cotton breeding since the 1990s. We also identified remarkable gene modules and expression QTL (eQTL) hotspots related to the regulation of reactive oxygen species (ROS) homeostasis and immune response. Furthermore, 15 candidate causal genes were prioritized by TWAS. Knocking down eight genes with a negative effect significantly enhanced cotton resistance to . Among them, , encoding an armadillo (ARM)-repeat protein, was verified to modulate cotton resistance to by regulating ROS homeostasis. Overall, this study updates the understanding of the genetic basis and regulatory mechanisms of cotton's VW resistance, providing valuable strategies for VW management through genomic selection in cotton breeding.
研究复杂性状背后的遗传调控机制是作物改良的基础。由黄萎病菌(Verticillium spp.)引起的黄萎病(VW)是影响全球作物生产的最具毁灭性的病害之一。然而,作物对黄萎病菌抗性的遗传基础在很大程度上仍不清楚,这阻碍了黄萎病抗性育种的基因组选择进程。在此,我们通过对来自290份棉花种质的1152个转录组进行全基因组关联研究(GWAS)和全转录组关联研究(TWAS),揭示了棉花抗黄萎病的遗传结构和调控格局。我们在多个环境中鉴定出10个与黄萎病抗性相关的可靠数量性状位点(QTL)。这些QTL显示出聚合抗性效应,并在一个F群体支持的棉花黄萎病抗性基因组预测中表现出有前景的效果。此外,对这些优异等位基因的溯源分析表明,自20世纪90年代以来,Lsnp1、Lsnp4、Lsnp5、Lsnp8和Lsnp9的利用显著增加,这可能有助于中国棉花育种中黄萎病抗性的提高。我们还鉴定出与活性氧(ROS)稳态调节和免疫反应相关的显著基因模块和表达数量性状位点(eQTL)热点。此外,通过TWAS确定了15个候选因果基因。敲低8个具有负面影响的基因显著增强了棉花对黄萎病菌的抗性。其中,编码犰狳(ARM)重复蛋白的基因被证实通过调节ROS稳态来调控棉花对黄萎病菌的抗性。总体而言,本研究更新了对棉花黄萎病抗性遗传基础和调控机制的认识,为通过棉花育种中的基因组选择进行黄萎病管理提供了有价值的策略。