Suppr超能文献

使用霍特林T多元控制图对具有三级质量控制方案的实验室检测进行有效监测。

Use of Hoteling's T multivariate control chart for effective monitoring of a laboratory test with a 3-level quality control scheme.

作者信息

Ialongo Cristiano

机构信息

Department of clinical pathology, University Hospital Policlinico Umberto I, Roma, Italy.

出版信息

Biochem Med (Zagreb). 2025 Jun 15;35(2):020701. doi: 10.11613/BM.2025.020701. Epub 2025 Apr 15.

Abstract

INTRODUCTION

A control chart based on Hotelling's T multivariate statistics was used to monitor the quality of an immunoenzymatic assay for plasma levetiracetam. The chart incorporated a multi-level quality control (MLQC) system with three concentration levels of the analyte and included the analytical performance specification (APS) for therapeutic drug monitoring.

MATERIALS AND METHODS

Data were collected from March 1 to August 14, 2024, comprising 84 consecutive triplets of values for the three MLQC levels. The initial 59 triplets were used to estimate the variance-covariance matrix and vector of means (phase I). These estimates were then applied to calculate Hotelling's T for the remaining 25 triplets (phase II). The pharmacokinetic model of Fraser was employed to derive the APS for levetiracetam, based on a twice-daily dosing scheme and a median half-life of 8 hours.

RESULTS

The three MLQC levels showed significant correlations (r > 0.6) in both control phases. The Hotelling's T control chart detected no out-of-specifications states (OC), compared to 12 OC signals from individual Levey-Jennings charts monitoring the MLQC levels separately. The integration of the APS into the Hotelling's T chart provided additional insights into the process quality, and in two instances, it aligned with the OC signal from at least one of the Levey-Jennings charts.

CONCLUSIONS

Hotelling's T multivariate chart is effective for internal quality control of laboratory tests. As MLQC data offer correlated information, this approach is advantageous over multiple individual univariate charts as it ensures the correct level of false positive and false negative alarms.

摘要

引言

基于霍特林T多元统计量的控制图用于监测血浆左乙拉西坦免疫酶测定的质量。该控制图纳入了一个具有分析物三个浓度水平的多级质量控制(MLQC)系统,并包括治疗药物监测的分析性能规范(APS)。

材料与方法

收集了2024年3月1日至8月14日的数据,包括三个MLQC水平的84个连续三元组值。最初的59个三元组用于估计方差协方差矩阵和均值向量(第一阶段)。然后将这些估计值应用于计算其余25个三元组的霍特林T值(第二阶段)。基于每日两次给药方案和8小时的中位半衰期,采用弗雷泽药代动力学模型推导左乙拉西坦的APS。

结果

在两个控制阶段,三个MLQC水平均显示出显著相关性(r>0.6)。与单独监测MLQC水平的单个利维-詹宁斯图的12个超出规格状态(OC)信号相比,霍特林T控制图未检测到超出规格状态。将APS整合到霍特林T图中为过程质量提供了更多见解,在两个实例中,它与至少一个利维-詹宁斯图的OC信号一致。

结论

霍特林T多元图对实验室检测的内部质量控制有效。由于MLQC数据提供了相关信息,这种方法比多个单独的单变量图更具优势,因为它确保了正确水平的假阳性和假阴性警报。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa1/12131413/b50b42b6ed9a/bm-35-2-020701-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验