文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在姑息治疗中的应用:研究热点与趋势的文献计量分析

Application of artificial intelligence in palliative care: a bibliometric analysis of research hotspots and trends.

作者信息

Pan Mingxia, Huang Renling, Liu Chenxi, Xiong Yuanfang, Li Na, Peng Huan, Liang Yongqi, Gu Weisheng, Liu Hanjiao

机构信息

School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.

出版信息

Front Med (Lausanne). 2025 May 21;12:1597195. doi: 10.3389/fmed.2025.1597195. eCollection 2025.


DOI:10.3389/fmed.2025.1597195
PMID:40470051
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12135806/
Abstract

BACKGROUND: Palliative care, essential for improving quality of life in patients with serious illnesses, faces challenges such as resource limitations, workforce shortages, and the complexity of personalized care. AI's capabilities in data analysis and decision-making offer opportunities to optimize symptom management, predict end-of-life risks, and tailor care plans. However, existing research emphasizes isolated AI technologies rather than systematic evaluations of its developmental trajectory in palliative care, particularly through bibliometric and visualization studies. This gap obscures trends in technological applications, interdisciplinary collaboration pathways, and research hotspots, potentially hindering AI's practical innovation in the field. OBJECTIVE: This study employs bibliometric methods to analyze research trends in AI-driven palliative care, mapping knowledge structures and identifying hotspots to inform future advancements. METHODS: Data from the Web of Science Core Collection (inception to February 28, 2024) were analyzed using HistCite for bibliometric aggregation, VOSviewer for co-occurrence analysis, and CiteSpace for keyword trends. RESULTS: Among 246 publications from 45 countries, 615 institutions, and 1,456 authors, output surged notably between 2020 and 2024. The U.S. and the Journal of Pain and Symptom Management led contributions. Keyword analysis highlighted research foci on deep learning, neural networks, quality-of-life enhancement, survival prediction, AI model development, and clinical optimization. Emerging trends emphasize machine learning and holistic AI integration. CONCLUSION: Despite the increasing number of related studies in recent years, the field remains in its early developmental stage, indicating vast potential for further research. Studies have shown that international collaboration, particularly between the United States and China, is crucial for enhancing global academic influence. Prominent institutions in the United States, such as Harvard Medical School and the University of Pennsylvania, have led research in this area, while the involvement of other countries, especially developing nations, still requires strengthening. Technological analyses reveal that machine learning, deep learning, and natural language processing are becoming increasingly significant in palliative care. Future research will focus on improving patient quality of life, personalized treatment, and disease prognosis prediction, with an emphasis on interdisciplinary collaboration and the integration of technology with clinical practice to foster the innovative development of artificial intelligence in palliative care. SYSTEMATIC REVIEW REGISTRATION: https://osf.io/, identifier https://doi.org/10.17605/OSF.IO/YCHNQ.

摘要

背景:姑息治疗对于改善重症患者的生活质量至关重要,但面临着资源限制、劳动力短缺和个性化护理复杂性等挑战。人工智能在数据分析和决策方面的能力为优化症状管理、预测临终风险和定制护理计划提供了机会。然而,现有研究强调孤立的人工智能技术,而非对其在姑息治疗中的发展轨迹进行系统评估,特别是通过文献计量学和可视化研究。这一差距掩盖了技术应用趋势、跨学科合作途径和研究热点,可能阻碍人工智能在该领域的实际创新。 目的:本研究采用文献计量学方法分析人工智能驱动的姑息治疗研究趋势,绘制知识结构并识别热点,为未来进展提供信息。 方法:使用HistCite进行文献计量聚合、VOSviewer进行共现分析以及CiteSpace进行关键词趋势分析,对来自科学网核心合集(创刊至2024年2月28日)的数据进行分析。 结果:在来自45个国家、615个机构和1456位作者的246篇出版物中,2020年至2024年间产出显著激增。美国以及《疼痛与症状管理杂志》贡献突出。关键词分析突出了深度学习、神经网络、生活质量提升、生存预测、人工智能模型开发和临床优化等研究重点。新兴趋势强调机器学习和整体人工智能整合。 结论:尽管近年来相关研究数量不断增加,但该领域仍处于早期发展阶段,表明有巨大的进一步研究潜力。研究表明,国际合作,特别是美国和中国之间的合作,对于增强全球学术影响力至关重要。美国的知名机构,如哈佛医学院和宾夕法尼亚大学,引领了该领域的研究,而其他国家,特别是发展中国家的参与仍需加强。技术分析表明,机器学习、深度学习和自然语言处理在姑息治疗中变得越来越重要。未来研究将专注于提高患者生活质量、个性化治疗和疾病预后预测,强调跨学科合作以及技术与临床实践的整合,以促进人工智能在姑息治疗中的创新发展。 系统评价注册:https://osf.io/,标识符https://doi.org/10.176 / 05 / OSF.IO / YCHNQ。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/6f60b56d7788/fmed-12-1597195-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/f53d9a2dfc68/fmed-12-1597195-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/78320790a371/fmed-12-1597195-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/d7b8a79ae193/fmed-12-1597195-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/12f278bb04aa/fmed-12-1597195-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/5c52bc35cad6/fmed-12-1597195-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/6d4f2b832afc/fmed-12-1597195-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/6f60b56d7788/fmed-12-1597195-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/f53d9a2dfc68/fmed-12-1597195-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/78320790a371/fmed-12-1597195-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/d7b8a79ae193/fmed-12-1597195-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/12f278bb04aa/fmed-12-1597195-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/5c52bc35cad6/fmed-12-1597195-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/6d4f2b832afc/fmed-12-1597195-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30d0/12135806/6f60b56d7788/fmed-12-1597195-g007.jpg

相似文献

[1]
Application of artificial intelligence in palliative care: a bibliometric analysis of research hotspots and trends.

Front Med (Lausanne). 2025-5-21

[2]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[3]
Bibliometric analysis of the application of artificial intelligence in orthopedic imaging.

Quant Imaging Med Surg. 2025-5-1

[4]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[5]
Application of artificial intelligence in the health management of chronic disease: bibliometric analysis.

Front Med (Lausanne). 2025-1-7

[6]
Mapping knowledge landscapes and emerging trends in artificial intelligence for antimicrobial resistance: bibliometric and visualization analysis.

Front Med (Lausanne). 2025-1-28

[7]
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.

Front Neurosci. 2025-2-14

[8]
The published role of artificial intelligence in drug discovery and development: a bibliometric and social network analysis from 1990 to 2023.

J Cheminform. 2025-5-8

[9]
Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

Syst Rev. 2025-3-15

[10]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

本文引用的文献

[1]
A Bibliometric Analysis of the Application of Brain-Computer Interface in Rehabilitation Medicine Over the Past 20 Years.

J Multidiscip Healthc. 2025-3-4

[2]
Prognostic factors and outcomes in pediatric acute myeloid leukemia: a comprehensive bibliometric analysis of global research trends.

Front Oncol. 2025-2-17

[3]
Multidisciplinary clinician perceptions on utility of a machine learning tool (ALERT) to predict 6-month mortality and improve end-of-life outcomes for advanced cancer patients.

Cancer Med. 2025-3

[4]
Bibliometric analysis of rhein in the treatment of tumors.

Front Oncol. 2025-2-6

[5]
Mapping the landscape and research trend of imaging diagnosis in lymphoma: a bibliometric analysis from 1976 to 2024.

Front Med (Lausanne). 2025-1-29

[6]
Mapping knowledge landscapes and emerging trends in artificial intelligence for antimicrobial resistance: bibliometric and visualization analysis.

Front Med (Lausanne). 2025-1-28

[7]
Research Hotspots and Trends in Acupuncture for Cancer:A bibliometric analysis from 2004 to 2024.

J Multidiscip Healthc. 2025-1-31

[8]
Leveraging Artificial Intelligence/Machine Learning Models to Identify Potential Palliative Care Beneficiaries: A Systematic Review.

J Gerontol Nurs. 2025-1

[9]
Machine Learning for Targeted Advance Care Planning in Cancer Patients: A Quality Improvement Study.

J Pain Symptom Manage. 2024-12

[10]
A bibliometric analysis of awake prone positioning for non-intubated patients.

Eur J Intern Med. 2025-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索