Pan Mingxia, Huang Renling, Liu Chenxi, Xiong Yuanfang, Li Na, Peng Huan, Liang Yongqi, Gu Weisheng, Liu Hanjiao
School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
Front Med (Lausanne). 2025 May 21;12:1597195. doi: 10.3389/fmed.2025.1597195. eCollection 2025.
BACKGROUND: Palliative care, essential for improving quality of life in patients with serious illnesses, faces challenges such as resource limitations, workforce shortages, and the complexity of personalized care. AI's capabilities in data analysis and decision-making offer opportunities to optimize symptom management, predict end-of-life risks, and tailor care plans. However, existing research emphasizes isolated AI technologies rather than systematic evaluations of its developmental trajectory in palliative care, particularly through bibliometric and visualization studies. This gap obscures trends in technological applications, interdisciplinary collaboration pathways, and research hotspots, potentially hindering AI's practical innovation in the field. OBJECTIVE: This study employs bibliometric methods to analyze research trends in AI-driven palliative care, mapping knowledge structures and identifying hotspots to inform future advancements. METHODS: Data from the Web of Science Core Collection (inception to February 28, 2024) were analyzed using HistCite for bibliometric aggregation, VOSviewer for co-occurrence analysis, and CiteSpace for keyword trends. RESULTS: Among 246 publications from 45 countries, 615 institutions, and 1,456 authors, output surged notably between 2020 and 2024. The U.S. and the Journal of Pain and Symptom Management led contributions. Keyword analysis highlighted research foci on deep learning, neural networks, quality-of-life enhancement, survival prediction, AI model development, and clinical optimization. Emerging trends emphasize machine learning and holistic AI integration. CONCLUSION: Despite the increasing number of related studies in recent years, the field remains in its early developmental stage, indicating vast potential for further research. Studies have shown that international collaboration, particularly between the United States and China, is crucial for enhancing global academic influence. Prominent institutions in the United States, such as Harvard Medical School and the University of Pennsylvania, have led research in this area, while the involvement of other countries, especially developing nations, still requires strengthening. Technological analyses reveal that machine learning, deep learning, and natural language processing are becoming increasingly significant in palliative care. Future research will focus on improving patient quality of life, personalized treatment, and disease prognosis prediction, with an emphasis on interdisciplinary collaboration and the integration of technology with clinical practice to foster the innovative development of artificial intelligence in palliative care. SYSTEMATIC REVIEW REGISTRATION: https://osf.io/, identifier https://doi.org/10.17605/OSF.IO/YCHNQ.
背景:姑息治疗对于改善重症患者的生活质量至关重要,但面临着资源限制、劳动力短缺和个性化护理复杂性等挑战。人工智能在数据分析和决策方面的能力为优化症状管理、预测临终风险和定制护理计划提供了机会。然而,现有研究强调孤立的人工智能技术,而非对其在姑息治疗中的发展轨迹进行系统评估,特别是通过文献计量学和可视化研究。这一差距掩盖了技术应用趋势、跨学科合作途径和研究热点,可能阻碍人工智能在该领域的实际创新。 目的:本研究采用文献计量学方法分析人工智能驱动的姑息治疗研究趋势,绘制知识结构并识别热点,为未来进展提供信息。 方法:使用HistCite进行文献计量聚合、VOSviewer进行共现分析以及CiteSpace进行关键词趋势分析,对来自科学网核心合集(创刊至2024年2月28日)的数据进行分析。 结果:在来自45个国家、615个机构和1456位作者的246篇出版物中,2020年至2024年间产出显著激增。美国以及《疼痛与症状管理杂志》贡献突出。关键词分析突出了深度学习、神经网络、生活质量提升、生存预测、人工智能模型开发和临床优化等研究重点。新兴趋势强调机器学习和整体人工智能整合。 结论:尽管近年来相关研究数量不断增加,但该领域仍处于早期发展阶段,表明有巨大的进一步研究潜力。研究表明,国际合作,特别是美国和中国之间的合作,对于增强全球学术影响力至关重要。美国的知名机构,如哈佛医学院和宾夕法尼亚大学,引领了该领域的研究,而其他国家,特别是发展中国家的参与仍需加强。技术分析表明,机器学习、深度学习和自然语言处理在姑息治疗中变得越来越重要。未来研究将专注于提高患者生活质量、个性化治疗和疾病预后预测,强调跨学科合作以及技术与临床实践的整合,以促进人工智能在姑息治疗中的创新发展。 系统评价注册:https://osf.io/,标识符https://doi.org/10.176 / 05 / OSF.IO / YCHNQ。
Front Med (Lausanne). 2025-5-21
Quant Imaging Med Surg. 2025-5-1
Front Biosci (Landmark Ed). 2022-8-31
Front Med (Lausanne). 2025-1-7
Front Neurosci. 2025-2-14
J Multidiscip Healthc. 2025-3-4
Front Oncol. 2025-2-6
Front Med (Lausanne). 2025-1-29
J Multidiscip Healthc. 2025-1-31
J Pain Symptom Manage. 2024-12
Eur J Intern Med. 2025-1