文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在骨科影像学应用中的文献计量分析

Bibliometric analysis of the application of artificial intelligence in orthopedic imaging.

作者信息

Huang Xiao, Han Fei, Chen Yong-Feng, Sun Qiang, Guo Jian-Wei, Ye Zi, Qi Wei, Zhang Da-Wei

机构信息

Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China.

Lintong Rehabilitation and Convalescent Centre of the Joint Logistics Support Force, Xi'an, China.

出版信息

Quant Imaging Med Surg. 2025 May 1;15(5):3993-4013. doi: 10.21037/qims-24-1384. Epub 2025 Apr 28.


DOI:10.21037/qims-24-1384
PMID:40384704
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12084720/
Abstract

BACKGROUND: With the development of artificial intelligence (AI) and the increasing significance of imaging in orthopedics, the application of AI in the field of orthopedic imaging is becoming increasingly extensive. Previous studies show that the application of AI-based orthopedic imaging may break the traditional model of the field. As a result, relevant research has received attention, and numerous articles have been published. Through bibliometric analysis, this study summarized the knowledge structure of AI-based orthopedic imaging and explored its potential research trends and focal points. METHODS: In this study, literature on AI in the field of orthopedic imaging available in the Web of Science Core Collection (WoSCC) database from 1 January 2007 to 31 December 2024 was analyzed. In order to identify the main research topics and generate visual charts of countries, institutions, authors, and keyword networks, the search results were imported into VOSviewer and CiteSpace. RESULTS: A total of 3,147 publications were analyzed, revealing a rapid increase in AI research in orthopedic imaging since 2007, with over 90% of studies published after 2017. The United States (US) and China dominate this field, with the US leading in citations and academic influence, and China demonstrating significant growth in productivity. Institutional analysis highlighted Harvard University and Stanford University as key contributors, reflecting their strong academic influence. Keyword analysis identified three main research focuses: (I) advancements in algorithm development, particularly deep learning (DL) methods such as convolutional neural networks (CNNs); (II) applications in orthopedic disease imaging, including osteoarthritis, osteoporosis, and total knee arthroplasty; and (III) innovations in multimodal fusion and three-dimensional (3D) imaging techniques. Emerging trends emphasize integrating imaging data with clinical biomarkers to improve diagnostic accuracy and therapeutic decision-making. These findings provide a comprehensive overview of AI's role in orthopedic imaging, emphasizing areas of high impact and potential future directions for research. CONCLUSIONS: The research on the application of AI in orthopedic imaging is a hot topic and indicates broad research prospects in the future. However, this study suggests that research teams should strengthen collaboration, especially international cooperation. Based on comprehensive analysis, the development of DL algorithms (especially CNNs), the use of AI in processing image data related to orthopedic diseases (segmentation, classification, and feature map extraction), and the expansion of AI imaging applications in different diseases are expected to become hotspots in future research on the application of AI in orthopedic imaging.

摘要

背景:随着人工智能(AI)的发展以及影像学在骨科领域的重要性日益增加,AI在骨科影像学领域的应用越来越广泛。以往研究表明,基于AI的骨科影像学应用可能会打破该领域的传统模式。因此,相关研究受到关注,已有众多文章发表。本研究通过文献计量分析总结了基于AI的骨科影像学的知识结构,并探讨了其潜在的研究趋势和重点。 方法:本研究分析了Web of Science核心合集(WoSCC)数据库中2007年1月1日至2024年12月31日期间骨科影像学领域中关于AI的文献。为了确定主要研究主题并生成国家、机构、作者和关键词网络的可视化图表,将搜索结果导入VOSviewer和CiteSpace。 结果:共分析了3147篇出版物,显示自2007年以来骨科影像学中AI研究迅速增加,超过90%的研究发表于2017年之后。美国和中国在该领域占据主导地位,美国在引文和学术影响力方面领先,而中国在生产力方面呈现显著增长。机构分析突出了哈佛大学和斯坦福大学作为主要贡献者,反映了它们强大的学术影响力。关键词分析确定了三个主要研究重点:(I)算法开发的进展,特别是深度学习(DL)方法,如卷积神经网络(CNN);(II)在骨科疾病影像学中的应用,包括骨关节炎、骨质疏松症和全膝关节置换术;(III)多模态融合和三维(3D)成像技术的创新。新兴趋势强调将影像数据与临床生物标志物整合以提高诊断准确性和治疗决策。这些发现全面概述了AI在骨科影像学中的作用,强调了高影响力领域以及未来潜在的研究方向。 结论:AI在骨科影像学中的应用研究是一个热门话题,且表明未来具有广阔的研究前景。然而,本研究建议研究团队应加强合作,尤其是国际合作。基于综合分析,DL算法(特别是CNN)的开发、AI在处理与骨科疾病相关的图像数据(分割、分类和特征图提取)中的应用以及AI成像在不同疾病中的应用扩展有望成为未来AI在骨科影像学应用研究的热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/9bdd935f5863/qims-15-05-3993-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/5b253fd6e28c/qims-15-05-3993-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/27eb836a5b4f/qims-15-05-3993-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/f83937b51f25/qims-15-05-3993-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/ddf6a7c5b460/qims-15-05-3993-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/ed3fba3aa139/qims-15-05-3993-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/412451b238f8/qims-15-05-3993-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/41e312500460/qims-15-05-3993-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/9bdd935f5863/qims-15-05-3993-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/5b253fd6e28c/qims-15-05-3993-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/27eb836a5b4f/qims-15-05-3993-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/f83937b51f25/qims-15-05-3993-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/ddf6a7c5b460/qims-15-05-3993-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/ed3fba3aa139/qims-15-05-3993-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/412451b238f8/qims-15-05-3993-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/41e312500460/qims-15-05-3993-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d94/12084720/9bdd935f5863/qims-15-05-3993-f8.jpg

相似文献

[1]
Bibliometric analysis of the application of artificial intelligence in orthopedic imaging.

Quant Imaging Med Surg. 2025-5-1

[2]
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.

Front Neurosci. 2025-2-14

[3]
Artificial intelligence-assisted multimodal imaging for the clinical applications of breast cancer: a bibliometric analysis.

Discov Oncol. 2025-4-16

[4]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[5]
Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping.

Syst Rev. 2025-3-15

[6]
The published role of artificial intelligence in drug discovery and development: a bibliometric and social network analysis from 1990 to 2023.

J Cheminform. 2025-5-8

[7]
Mapping knowledge landscapes and emerging trends in artificial intelligence for antimicrobial resistance: bibliometric and visualization analysis.

Front Med (Lausanne). 2025-1-28

[8]
Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022.

Int J Ophthalmol. 2024-9-18

[9]
Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis.

Front Oncol. 2022-11-28

[10]
Evolutionary patterns and research frontiers of artificial intelligence in age-related macular degeneration: a bibliometric analysis.

Quant Imaging Med Surg. 2025-1-2

本文引用的文献

[1]
A literature review of artificial intelligence (AI) for medical image segmentation: from AI and explainable AI to trustworthy AI.

Quant Imaging Med Surg. 2024-12-5

[2]
SelfGCN: Graph Convolution Network With Self-Attention for Skeleton-Based Action Recognition.

IEEE Trans Image Process. 2024

[3]
Application of deep learning algorithms in classification and localization of implant cutout for the postoperative hip.

Skeletal Radiol. 2026-1

[4]
Open-source graphical user interface for the creation of synthetic skeletons for medical image analysis.

J Med Imaging (Bellingham). 2024-5

[5]
Artificial intelligence diagnostic model for multi-site fracture X-ray images of extremities based on deep convolutional neural networks.

Quant Imaging Med Surg. 2024-2-1

[6]
Pruning and quantization algorithm with applications in memristor-based convolutional neural network.

Cogn Neurodyn. 2024-2

[7]
A Review of deep learning methods for denoising of medical low-dose CT images.

Comput Biol Med. 2024-3

[8]
Magnetic Resonance Imaging Biomarkers of Bone and Soft Tissue Tumors.

Semin Musculoskelet Radiol. 2024-2

[9]
Two-stage video-based convolutional neural networks for adult spinal deformity classification.

Front Neurosci. 2023-12-11

[10]
The Development and Validation of an AI Diagnostic Model for Sacroiliitis: A Deep-Learning Approach.

Diagnostics (Basel). 2023-12-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索