Suppr超能文献

利用人工智能加强以患者为中心的护理:对神经内分泌肿瘤相关问题回复的一项研究

Enhancing patient-centered care with AI: a study of responses to neuroendocrine neoplasms queries.

作者信息

Panzuto Francesco, Gallo Alessandro, Marini Marco, Rinzivillo Maria, Albertelli Manuela, Grana Chiara Maria, Maccauro Marco, Milione Massimo, Tafuto Salvatore, Barbi Simona, Partelli Stefano

机构信息

Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome. Digestive Disease Unit, Sant'Andrea University Hospital, ENETS Center of Excellence, Rome, Italy.

Springer Healthcare, Milano, Italy.

出版信息

Endocrine. 2025 Jun 5. doi: 10.1007/s12020-025-04294-9.

Abstract

INTRODUCTION

Large Language Models (LLMs) are increasingly used in oncology, but their application in neuroendocrine neoplasms (NENs) is still unexplored.

AIM

To evaluate the accuracy, clarity, and completeness of LLM responses to clinically relevant NEN management questions.

MATERIAL AND METHODS

A study was conducted from October to December 2024, during which a team of experts posed nine key NEN management questions to three LLMs: ChatGPT Plus, Microsoft Copilot, and Perplexity. Responses were assessed by 22 expert physicians across specialties using a 5-point Likert scale based on scientific accuracy, clarity, and completeness, and additionally evaluated by 24 NEN patients for clarity and relevance. Primary outcomes included LLM performance across evaluation criteria and factors influencing ratings, analyzed using a linear mixed-effects model.

RESULTS

ChatGPT Plus scored highest (M = 3.72, SE = 0.19), followed by Copilot (M = 3.54, SE = 0.19) and Perplexity (M = 3.22, SE = 0.19), with clarity rating the highest. The chemotherapy indications question received the lowest scores, underscoring LLM challenges in handling complex clinical decisions.

DISCUSSION

This study highlights LLMs' potential in NEN management as informative tools with clear but variably accurate responses. Continuous improvement and clinician oversight are essential for their successful integration into patient communication.

摘要

引言

大语言模型(LLMs)在肿瘤学中的应用越来越广泛,但其在神经内分泌肿瘤(NENs)中的应用仍未得到探索。

目的

评估大语言模型对临床相关神经内分泌肿瘤管理问题的回答的准确性、清晰度和完整性。

材料与方法

于2024年10月至12月进行了一项研究,在此期间,一组专家向三个大语言模型提出了九个关键的神经内分泌肿瘤管理问题:ChatGPT Plus、Microsoft Copilot和Perplexity。22名各专业的专家医生根据科学准确性、清晰度和完整性,使用5点李克特量表对回答进行评估,另外24名神经内分泌肿瘤患者对回答的清晰度和相关性进行评估。主要结果包括大语言模型在各项评估标准下的表现以及影响评分的因素,使用线性混合效应模型进行分析。

结果

ChatGPT Plus得分最高(M = 3.72,SE = 0.19),其次是Copilot(M = 3.54,SE = 0.19)和Perplexity(M = 3.22,SE = 0.19),清晰度评分最高。化疗指征问题得分最低,凸显了大语言模型在处理复杂临床决策方面的挑战。

讨论

本研究强调了大语言模型在神经内分泌肿瘤管理中的潜力,可作为提供信息的工具,回答清晰但准确性各异。持续改进和临床医生的监督对于它们成功融入患者沟通至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验