文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从临床医生和患者角度评估ChatGPT在肺癌放疗中的教育潜力:内容质量与可读性分析

Assessing ChatGPT's Educational Potential in Lung Cancer Radiotherapy From Clinician and Patient Perspectives: Content Quality and Readability Analysis.

作者信息

Richlitzki Cedric, Mansoorian Sina, Käsmann Lukas, Stoleriu Mircea Gabriel, Kovacs Julia, Sienel Wulf, Kauffmann-Guerrero Diego, Duell Thomas, Schmidt-Hegemann Nina Sophie, Belka Claus, Corradini Stefanie, Eze Chukwuka

机构信息

Department of Radiation Oncology, University Hospital LMU, Marchioninistrasse 15, Munich, 81377, Germany, 49 89440073770.

Asklepios Lung Clinic Munich - Gauting, Division of Thoracic Surgery, LMU University Hospital, Munich, Germany.

出版信息

JMIR Cancer. 2025 Aug 13;11:e69783. doi: 10.2196/69783.


DOI:10.2196/69783
PMID:40802978
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349734/
Abstract

BACKGROUND: Large language models (LLMs) such as ChatGPT (OpenAI) are increasingly discussed as potential tools for patient education in health care. In radiation oncology, where patients are often confronted with complex medical terminology and complex treatment plans, LLMs may support patient understanding and promote more active participation in care. However, the readability, accuracy, completeness, and overall acceptance of LLM-generated medical content remain underexplored. OBJECTIVE: This study aims to evaluate the potential of ChatGPT-4 as a supplementary tool for patient education in the context of lung cancer radiotherapy by assessing the readability, content quality, and perceived usefulness of artificial intelligence-generated responses from both clinician and patient perspectives. METHODS: A total of 8 frequently asked questions about radiotherapy for lung cancer were developed based on clinical experience from a team of clinicians specialized in lung cancer treatment at a university hospital. The questions were submitted individually to ChatGPT-4o (version as of July 2024) using the prompt: "I am a lung cancer patient looking for answers to the following questions." Responses were evaluated using three approaches: (1) a readability analysis applying the Modified Flesch Reading Ease (FRE) formula for German and the 4th Vienna Formula (WSTF); (2) a multicenter expert evaluation by 6 multidisciplinary clinicians (radiation oncologists, medical oncologists, and thoracic surgeons) specialized in lung cancer treatment using a 5-point Likert scale to assess relevance, correctness, and completeness; and (3) a patient evaluation during the first follow-up appointment after radiotherapy, assessing comprehensibility, accuracy, relevance, trustworthiness, and willingness to use ChatGPT for future medical questions. RESULTS: Readability analysis classified most responses as "very difficult to read" (university level) or "difficult to read" (upper secondary school), likely due to the use of medical language and long sentence structures. Clinician assessments yielded high scores for relevance (mean 4.5, SD 0.52) and correctness (mean 4.3, SD 0.65), but completeness received slightly lower ratings (mean 3.9, SD 0.59). A total of 30 patients rated the responses positively for clarity (mean 4.4, SD 0.61) and relevance (mean 4.3, SD 0.64), but lower for trustworthiness (mean 3.8, SD 0.68) and usability (mean 3.7, SD 0.73). No harmful misinformation was identified in the responses. CONCLUSIONS: ChatGPT-4 shows promise as a supplementary tool for patient education in radiation oncology. While patients and clinicians appreciated the clarity and relevance of the information, limitations in completeness, trust, and readability highlight the need for clinician oversight and further optimization of LLM-generated content. Future developments should focus on improving accessibility, integrating real-time readability adaptation, and establishing standardized evaluation frameworks to ensure safe and effective clinical use.

摘要

背景:诸如ChatGPT(OpenAI)之类的大语言模型(LLMs)作为医疗保健中患者教育的潜在工具,正受到越来越多的讨论。在放射肿瘤学领域,患者常常面临复杂的医学术语和复杂的治疗方案,大语言模型可能有助于患者理解,并促进其更积极地参与护理。然而,大语言模型生成的医学内容的可读性、准确性、完整性及整体可接受性仍未得到充分探索。 目的:本研究旨在通过从临床医生和患者的角度评估人工智能生成回复的可读性、内容质量和感知有用性,来评估ChatGPT-4作为肺癌放疗背景下患者教育辅助工具的潜力。 方法:根据某大学医院一组专门从事肺癌治疗的临床医生的临床经验,共提出了8个关于肺癌放疗的常见问题。使用提示语“我是一名肺癌患者,想寻求以下问题的答案”,将这些问题分别提交给ChatGPT-4o(截至2024年7月的版本)。回复采用三种方法进行评估:(1)应用德语的改良弗莱什阅读简易度(FRE)公式和第4版维也纳公式(WSTF)进行可读性分析;(2)由6名专门从事肺癌治疗的多学科临床医生(放射肿瘤学家、医学肿瘤学家和胸外科医生)进行多中心专家评估,使用5点李克特量表评估相关性、正确性和完整性;(3)在放疗后的首次随访预约期间进行患者评估,评估可理解性、准确性、相关性、可信度以及未来使用ChatGPT解答医疗问题的意愿。 结果:可读性分析将大多数回复归类为“非常难读”(大学水平)或“难读”(高中水平),这可能是由于使用了医学语言和长句子结构。临床医生的评估在相关性(平均4.5,标准差0.52)和正确性(平均4.3,标准差0.65)方面得分较高,但完整性得分略低(平均3.9,标准差0.59)。共有30名患者对回复的清晰度(平均4.4,标准差0.61)和相关性(平均4.3,标准差0.64)给予了积极评价,但对可信度(平均3.8,标准差0.68)和可用性(平均3.7,标准差0.73)的评价较低。回复中未发现有害的错误信息。 结论:ChatGPT-4显示出作为放射肿瘤学患者教育辅助工具的潜力。虽然患者和临床医生赞赏信息的清晰度和相关性,但完整性、信任度和可读性方面的局限性凸显了临床医生监督和进一步优化大语言模型生成内容的必要性。未来的发展应侧重于提高可及性、整合实时可读性调整以及建立标准化评估框架,以确保临床安全有效使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0cf/12349734/ba53f5e7f2d5/cancer-v11-e69783-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0cf/12349734/ba53f5e7f2d5/cancer-v11-e69783-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0cf/12349734/ba53f5e7f2d5/cancer-v11-e69783-g001.jpg

相似文献

[1]
Assessing ChatGPT's Educational Potential in Lung Cancer Radiotherapy From Clinician and Patient Perspectives: Content Quality and Readability Analysis.

JMIR Cancer. 2025-8-13

[2]
Using Artificial Intelligence ChatGPT to Access Medical Information About Chemical Eye Injuries: Comparative Study.

JMIR Form Res. 2025-8-13

[3]
Evaluating ChatGPT's Utility in Biologic Therapy for Systemic Lupus Erythematosus: Comparative Study of ChatGPT and Google Web Search.

JMIR Form Res. 2025-8-28

[4]
Application of Large Language Models in Stroke Rehabilitation Health Education: 2-Phase Study.

J Med Internet Res. 2025-7-22

[5]
Evaluation of ChatGPT-4 as an Online Outpatient Assistant in Puerperal Mastitis Management: Content Analysis of an Observational Study.

JMIR Med Inform. 2025-7-24

[6]
Assessing the Role of Large Language Models Between ChatGPT and DeepSeek in Asthma Education for Bilingual Individuals: Comparative Study.

JMIR Med Inform. 2025-8-13

[7]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[8]
Is Information About Musculoskeletal Malignancies From Large Language Models or Web Resources at a Suitable Reading Level for Patients?

Clin Orthop Relat Res. 2025-2-1

[9]
Readability, Reliability, and Quality Analysis of Internet-Based Patient Education Materials and Large Language Models on Meniere's Disease.

J Otolaryngol Head Neck Surg. 2025

[10]
American Academy of Orthopaedic Surgeons OrthoInfo provides more readable information regarding rotator cuff injury than ChatGPT.

J ISAKOS. 2025-2-12

本文引用的文献

[1]
Patient- and clinician-based evaluation of large language models for patient education in prostate cancer radiotherapy.

Strahlenther Onkol. 2025-3

[2]
Readability and Appropriateness of Responses Generated by ChatGPT 3.5, ChatGPT 4.0, Gemini, and Microsoft Copilot for FAQs in Refractive Surgery.

Turk J Ophthalmol. 2024-12-31

[3]
Large language models in patient education: a scoping review of applications in medicine.

Front Med (Lausanne). 2024-10-29

[4]
Applications and Concerns of ChatGPT and Other Conversational Large Language Models in Health Care: Systematic Review.

J Med Internet Res. 2024-11-7

[5]
Comparative Evaluation of LLMs in Clinical Oncology.

NEJM AI. 2024-5

[6]
ChatGPT has a language problem - but science can fix it.

Nature. 2024-8-9

[7]
Benchmarking four large language models' performance of addressing Chinese patients' inquiries about dry eye disease: A two-phase study.

Heliyon. 2024-7-14

[8]
Enhancing Health Literacy: Evaluating the Readability of Patient Handouts Revised by ChatGPT's Large Language Model.

Otolaryngol Head Neck Surg. 2024-12

[9]
Performance of ChatGPT Across Different Versions in Medical Licensing Examinations Worldwide: Systematic Review and Meta-Analysis.

J Med Internet Res. 2024-7-25

[10]
Evaluating ChatGPT to test its robustness as an interactive information database of radiation oncology and to assess its responses to common queries from radiotherapy patients: A single institution investigation.

Cancer Radiother. 2024-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索