文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

甲型流感病毒诱导隧道纳米管样结构的形成需要细胞凋亡的发生。

Induction of tunnelling nanotube-like structures by influenza A viruses requires the onset of apoptosis.

作者信息

Weir Daniel, Bentley-Abbot Calum, McCowan Jack, Loney Colin, Roberts Edward, Hutchinson Edward

机构信息

MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.

Cancer Research UK Scotland Institute, Glasgow, United Kingdom.

出版信息

PLoS Pathog. 2025 Jun 5;21(6):e1013191. doi: 10.1371/journal.ppat.1013191. eCollection 2025 Jun.


DOI:10.1371/journal.ppat.1013191
PMID:40472024
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12169559/
Abstract

As well as spreading through virions, influenza A viruses (IAVs) can evade antiviral drugs and neutralising antibodies by spreading directly from cell to cell. In cell culture this can occur by the induction of intercellular membrane connections known as tunnelling nanotube-like structures (TLSs), which are capable of trafficking the viral genome between cells. Here, we showed that TLSs are formed by IAV infected cells in vivo, and then used in vitro models to ask how IAVs induce their formation. We found that TLS formation is not induced by cytokine signalling from infected to uninfected cells, but induction does require intracellular IAV replication. IAV replication can form filamentous virions which have structural similarities to TLSs, but we found that TLS induction is independent of virion morphology. We therefore looked at the intracellular responses to infection and found that the induction of TLSs correlated with the induction of apoptosis. Furthermore, the ability of IAVs to drive TLS formation can be modulated by chemically inhibiting, or inducing apoptosis. Finally, we found that inhibiting apoptosis, which prevents IAVs from inducing TLSs, lead to a significant reduction in the ability of IAVs to directly spread between cells. Our results, which suggest that IAVs can control their ability to spread directly from cell to cell by driving infected cells into apoptosis, identifies a new way in which a virus can manipulate its host to evade antiviral immune responses.

摘要

甲型流感病毒(IAV)除了通过病毒粒子传播外,还能通过细胞间直接传播来逃避抗病毒药物和中和抗体。在细胞培养中,这可能是通过诱导形成称为隧道纳米管样结构(TLSs)的细胞间膜连接来实现的,这种结构能够在细胞间运输病毒基因组。在这里,我们表明TLSs是由IAV感染的细胞在体内形成的,然后利用体外模型来研究IAV如何诱导其形成。我们发现,TLS的形成不是由感染细胞向未感染细胞的细胞因子信号传导诱导的,但诱导确实需要细胞内IAV复制。IAV复制可以形成与TLSs具有结构相似性的丝状病毒粒子,但我们发现TLS的诱导与病毒粒子形态无关。因此,我们研究了细胞内对感染的反应,发现TLSs的诱导与细胞凋亡的诱导相关。此外,IAV驱动TLS形成的能力可以通过化学抑制或诱导细胞凋亡来调节。最后,我们发现抑制细胞凋亡(这会阻止IAV诱导TLSs)会导致IAV在细胞间直接传播的能力显著降低。我们的结果表明,IAV可以通过驱动感染细胞凋亡来控制其在细胞间直接传播的能力,这确定了病毒操纵其宿主以逃避抗病毒免疫反应的一种新方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/b7b1c27c474a/ppat.1013191.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/c99a1197c3a7/ppat.1013191.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/567967639a09/ppat.1013191.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/d018f6bc7e53/ppat.1013191.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/3635b1f3580f/ppat.1013191.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/ab46574f33b6/ppat.1013191.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/371dedf2dcc2/ppat.1013191.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/ee0c1484fae9/ppat.1013191.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/b7b1c27c474a/ppat.1013191.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/c99a1197c3a7/ppat.1013191.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/567967639a09/ppat.1013191.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/d018f6bc7e53/ppat.1013191.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/3635b1f3580f/ppat.1013191.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/ab46574f33b6/ppat.1013191.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/371dedf2dcc2/ppat.1013191.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/ee0c1484fae9/ppat.1013191.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa6/12169559/b7b1c27c474a/ppat.1013191.g008.jpg

相似文献

[1]
Induction of tunnelling nanotube-like structures by influenza A viruses requires the onset of apoptosis.

PLoS Pathog. 2025-6-5

[2]
exploits host- and bacterial-derived β-alanine for replication inside host macrophages.

Elife. 2025-6-19

[3]
Contrasting interferon-mediated antiviral responses in human lung adenocarcinoma cells.

J Virol. 2025-6-17

[4]
Binding antibody titers against the hemagglutinin and neuraminidase correlate with protection against medically attended influenza A and B disease.

J Virol. 2025-6-17

[5]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[6]
Dexamethasone disrupts intracellular pH homeostasis to delay coronavirus infectious bronchitis virus cell entry via sodium hydrogen exchanger 3 activation.

J Virol. 2025-6-17

[7]
How to recover from a bad start: adaptation of HIV-1 transcription start site mutants during serial passaging in culture.

J Virol. 2025-6-17

[8]
Prognostic factors for return to work in breast cancer survivors.

Cochrane Database Syst Rev. 2025-5-7

[9]
The use of sialic acids as attachment factors is a common feature of -D species.

J Virol. 2025-6-17

[10]
hnRNPM regulates influenza A virus replication through distinct mechanisms in human and avian cells: implications for cross-species transmission.

J Virol. 2025-6-17

本文引用的文献

[1]
SARS-CoV-2 cellular coinfection is limited by superinfection exclusion.

J Virol. 2025-4-15

[2]
Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies.

Vet Sci. 2024-11-10

[3]
Lymphocytic choriomeningitis arenavirus utilises intercellular connections for cell to cell spread.

Sci Rep. 2024-11-22

[4]
Novel intercellular spread mode of respiratory syncytial virus contributes to neutralization escape.

Antiviral Res. 2024-11

[5]
Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies.

Eur J Pharm Sci. 2024-12-1

[6]
Macrophage-conditioned medium enhances tunneling nanotube formation in breast cancer cells via PKC, Src, NF-κB, and p38 MAPK signaling.

Cell Signal. 2024-9

[7]
A guide to cell death pathways.

Nat Rev Mol Cell Biol. 2024-5

[8]
Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization.

EMBO J. 2023-12-11

[9]
Cotransfer of antigen and contextual information harmonizes peripheral and lymph node conventional dendritic cell activation.

Sci Immunol. 2023-7-21

[10]
The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells.

Life Sci Alliance. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索