Noack Christopher, Jenderny Sebastian, Giez Christoph, Merza Ornina, Hofacker Lisa-Marie, Wittlieb Jörg, Repnik Urska, Bramkamp Marc, Ochs Karlheinz, Bosch Thomas C G
Zoological Institute, University of Kiel, Kiel 24118, Germany.
Chair of Digital Communication Systems, Ruhr University Bochum, Bochum 44801, Germany.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2501225122. doi: 10.1073/pnas.2501225122. Epub 2025 Jun 5.
Understanding how neural populations emerge to give rise to behavior is a major goal in neuroscience. Here, we explore the self-assembly of neural circuits in , an organism with a simple nervous system but no centralized information processing, to enhance the understanding of nervous system evolution. We define self-assembly as spontaneous organization of neurons into functional circuits without requiring a prespecified structural template. In this context, the N4 neuronal circuit, which we have previously found to be particularly important in the feeding of the animal, develops in embryos through activity-driven self-assembly, a process in which intrinsic calcium activity drives connectivity and synchronization among spatially distributed neurons over time. Gap junctions and vesicle-mediated communication between neuronal and non-neuronal cells drive rapid assembly, with the embryo's prospective oral region exhibiting the highest neuronal density. An artificial electrical circuit-based model as a biophysically inspired simulation demonstrates dynamic increases in synchronization over time, along with predictions for selective dynamic adaptions of connections. Environmental factors, like temperature and an absent microbiome, modify neural architecture, suggesting the existence of a certain adaptability during neural development. We propose that these fundamental features originated in the last common bilaterian ancestor, supporting the hypothesis that the basic architecture of the nervous system is universal. Since in the natural habitat of both temperature fluctuations and changes in the microbiome can occur, our work not only illuminates a fundamental developmental process but also may guide environmental and evolutionary studies by explaining how organisms adapt to environmental variations.
理解神经群体如何产生并引发行为是神经科学的一个主要目标。在这里,我们探索了一种具有简单神经系统但无集中信息处理能力的生物中的神经回路自组装过程,以增进对神经系统进化的理解。我们将自组装定义为神经元自发组织成功能回路,而无需预先指定的结构模板。在此背景下,我们之前发现对该动物进食特别重要的N4神经元回路,在胚胎中通过活动驱动的自组装发育而成,在这个过程中,内在钙活动随着时间推移驱动空间分布的神经元之间的连接和同步。神经元与非神经元细胞之间的间隙连接和囊泡介导的通讯驱动快速组装,胚胎的预期口区表现出最高的神经元密度。基于人工电路的模型作为一种受生物物理学启发的模拟,展示了同步性随时间的动态增加,以及对连接选择性动态适应的预测。环境因素,如温度和微生物群落缺失,会改变神经结构,这表明在神经发育过程中存在一定的适应性。我们提出这些基本特征起源于最后一个共同的两侧对称动物祖先,支持了神经系统基本结构具有普遍性的假说。由于在该生物的自然栖息地中温度波动和微生物群落变化都可能发生,我们的工作不仅阐明了一个基本的发育过程,还可能通过解释生物体如何适应环境变化来指导环境和进化研究。