Suppr超能文献

在再生的普通淡水螅中,神经干神经元在功能性回路整合之前经历终末分化。

Terminal differentiation precedes functional circuit integration in the peduncle neurons in regenerating Hydra vulgaris.

机构信息

Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.

Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.

出版信息

Neural Dev. 2024 Oct 4;19(1):18. doi: 10.1186/s13064-024-00194-2.

Abstract

Understanding how neural circuits are regenerated following injury is a fundamental question in neuroscience. Hydra is a powerful model for studying this process because it has a simple neural circuit structure, significant and reproducible regenerative abilities, and established methods for creating transgenics with cell-type-specific expression. While Hydra is a long-standing model for regeneration and development, little is known about how neural activity and behavior is restored following significant injury. In this study, we ask if regenerating neurons terminally differentiate prior to reforming functional neural circuits, or if neural circuits regenerate first and then guide the constituent naive cells toward their terminal fate. To address this question, we developed a dual-expression transgenic Hydra line that expresses a cell-type-specific red fluorescent protein (tdTomato) in ec5 peduncle neurons, and a calcium indicator (GCaMP7s) in all neurons. With this transgenic line, we can simultaneously record neural activity and track the reappearance of the terminally-differentiated ec5 neurons. Using SCAPE (Swept Confocally Aligned Planar Excitation) microscopy, we monitored both calcium activity and expression of tdTomato-positive neurons in 3D with single-cell resolution during regeneration of Hydra's aboral end. The synchronized neural activity associated with a regenerated neural circuit was observed approximately 4 to 8 hours after expression of tdTomato in ec5 neurons. These data suggest that regenerating ec5 neurons undergo terminal differentiation prior to re-establishing their functional role in the nervous system. The combination of dynamic imaging of neural activity and gene expression during regeneration make Hydra a powerful model system for understanding the key molecular and functional processes involved in neural regeneration following injury.

摘要

了解神经回路在损伤后如何再生是神经科学中的一个基本问题。水螅是研究这一过程的有力模型,因为它具有简单的神经回路结构、显著且可重复的再生能力,以及建立具有细胞类型特异性表达的转基因的既定方法。虽然水螅是再生和发育的长期模型,但对于神经活动和行为在受到严重损伤后是如何恢复的,人们知之甚少。在这项研究中,我们探讨了再生神经元是否在形成功能性神经回路之前就已经终末分化,或者神经回路是否首先再生,然后引导组成神经回路的未成熟细胞向其终末命运分化。为了解决这个问题,我们开发了一种双表达转基因水螅系,该系在 ec5 花梗神经元中表达细胞类型特异性红色荧光蛋白(tdTomato),在所有神经元中表达钙指示剂(GCaMP7s)。利用这个转基因系,我们可以同时记录神经活动,并在水螅口面端的再生过程中以单细胞分辨率在 3D 中追踪终末分化的 ec5 神经元的重新出现。使用 SCAPE(扫描共聚焦平面激发)显微镜,我们以单细胞分辨率在 3D 中监测水螅口面端的再生过程中钙活性和 tdTomato 阳性神经元的表达。在 ec5 神经元表达 tdTomato 后大约 4 到 8 小时,观察到与再生神经回路相关的同步神经活动。这些数据表明,再生的 ec5 神经元在重新建立其在神经系统中的功能作用之前经历终末分化。在再生过程中动态成像神经活动和基因表达的结合使水螅成为研究损伤后神经再生所涉及的关键分子和功能过程的强大模型系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/11452936/9122bc2e0991/13064_2024_194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验