Álvarez Moisés Isaac, Król Monika, Keus Garance, He Zhenni, Innocenti Alessandro, Passerini Stefano, Ruokolainen Janne, Gohy Jean-François
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), Place de l'Université 1, 1348 Louvain-la-Neuve, Belgium.
Department of Applied Physics, School of Science, Aalto University, Espoo FIN-00076, Finland.
J Am Chem Soc. 2025 Jun 18;147(24):20347-20358. doi: 10.1021/jacs.5c00278. Epub 2025 Jun 5.
A block copolymer electrolyte (BCPE) with a liquid crystal and a lithium-ion conductive phase is investigated to assess the influence of an external applied electric field on the bulk morphology and the resulting electrochemical performance. For this purpose, the controlled synthesis of poly(10-[(4-cyano-4'-biphenyl)oxy] decatyl methacrylate)--(methoxy-poly(ethylene glycol) methacrylate--glycidyl methacrylate) [P(MALC)--P(PEGMA--GM)] block copolymer is performed by reversible addition-fragmentation transfer polymerization. The BCPE containing lithium bis(trifluoromethanesulfonyl)imide as the salt is drop-cast and crosslinked inside an alternating or direct current electric field. Transmission electron microscopy and small-angle X-ray scattering are utilized to study the phase behavior of BCPE and assess the influence of the electric field on the spatial orientation of the microdomains. A hierarchical lam-in-CYL nanostructure with the perpendicular orientation of the mesogenic smectic layers (lam) with respect to the BCPE cylinders (CYL) long axis is identified. Interestingly, the BCPE cast with electric field treatment gives rise to highly ordered cylindrical structures in comparison to the same BCPE without electric field treatment, which in turn exhibits a poorly ordered worm-like morphology. Consequently, a consistent improvement of the ionic conductivity is observed for the electric field-treated polymer, reaching ionic conductivities up to 4.7·10 S·cm at 60 °C, compared to 6.1·10 S·cm at the same temperature for the polymer electrolyte cast without an electric field. Surprisingly, for most of the investigated systems, the BCPE microstructure aligns perpendicular to the applied stimuli, which is explained by the movement of the whole liquid crystalline layer rather than by individual mesogen reorientation.
研究了一种具有液晶和锂离子导电相的嵌段共聚物电解质(BCPE),以评估外部施加电场对本体形态和由此产生的电化学性能的影响。为此,通过可逆加成-断裂链转移聚合反应可控合成聚(10-[(4-氰基-4'-联苯氧基]癸基甲基丙烯酸酯)-(甲氧基聚(乙二醇)甲基丙烯酸酯-甲基丙烯酸缩水甘油酯)[P(MALC)-P(PEGMA-GM)]嵌段共聚物。将含有双(三氟甲磺酰)亚胺锂作为盐的BCPE滴铸并在交变或直流电场中交联。利用透射电子显微镜和小角X射线散射研究BCPE的相行为,并评估电场对微区空间取向的影响。确定了一种具有向列型近晶层(lam)相对于BCPE圆柱(CYL)长轴垂直取向的分层lam-in-CYL纳米结构。有趣的是,与未经电场处理的相同BCPE相比,经电场处理浇铸的BCPE产生高度有序的圆柱结构,而未经电场处理的BCPE则呈现出无序的蠕虫状形态。因此,观察到电场处理的聚合物的离子电导率持续提高,在60℃时达到高达4.7·10 S·cm的离子电导率,而在相同温度下,未经电场浇铸的聚合物电解质的离子电导率为6.1·10 S·cm。令人惊讶的是,对于大多数研究的体系,BCPE微观结构垂直于施加的刺激排列,这是由整个液晶层的移动而不是由单个液晶元的重新取向来解释的。