Suppr超能文献

基于深度学习的功能超声图像血管分割

Vascular segmentation of functional ultrasound images using deep learning.

作者信息

Sebia Hana, Guyet Thomas, Pereira Mickaël, Valdebenito Marco, Berry Hugues, Vidal Benjamin

机构信息

AIstroSight, Inria, Hospices Civils de Lyon, Villeurbanne, France; University Claude Bernard Lyon 1, Villeurbanne, France.

AIstroSight, Inria, Hospices Civils de Lyon, Villeurbanne, France; University Claude Bernard Lyon 1, Villeurbanne, France.

出版信息

Comput Biol Med. 2025 Aug;194:110377. doi: 10.1016/j.compbiomed.2025.110377. Epub 2025 Jun 4.

Abstract

Segmentation of medical images is a fundamental task with numerous applications. While MRI, CT, and PET modalities have significantly benefited from deep learning segmentation techniques, more recent modalities, like functional ultrasound (fUS), have seen limited progress. fUS is a non invasive imaging method that measures changes in cerebral blood volume (CBV) with high spatio-temporal resolution. However, distinguishing arterioles from venules in fUS is challenging due to opposing blood flow directions within the same pixel. Ultrasound localization microscopy (ULM) can enhance resolution by tracking microbubble contrast agents but is invasive, and lacks dynamic CBV quantification. In this paper, we introduce the first deep learning-based application for fUS image segmentation, capable of differentiating signals based on vertical flow direction (upward vs. downward), using ULM-based automatic annotation, and enabling dynamic CBV quantification. In the cortical vasculature, this distinction in flow direction provides a proxy for differentiating arteries from veins. We evaluate various UNet architectures on fUS images of rat brains, achieving competitive segmentation performance, with 90% accuracy, a 71% F1 score, and an IoU of 0.59, using only 100 temporal frames from a fUS stack. These results are comparable to those from tubular structure segmentation in other imaging modalities. Additionally, models trained on resting-state data generalize well to images captured during visual stimulation, highlighting robustness. Although it does not reach the full granularity of ULM, the proposed method provides a practical, non-invasive and cost-effective solution for inferring flow direction-particularly valuable in scenarios where ULM is not available or feasible. Our pipeline shows high linear correlation coefficients between signals from predicted and actual compartments, showcasing its ability to accurately capture blood flow dynamics.

摘要

医学图像分割是一项具有众多应用的基础任务。虽然磁共振成像(MRI)、计算机断层扫描(CT)和正电子发射断层扫描(PET)模态已从深度学习分割技术中显著受益,但诸如功能超声(fUS)等更新的模态进展有限。fUS是一种非侵入性成像方法,可在高时空分辨率下测量脑血容量(CBV)的变化。然而,由于同一像素内血流方向相反,在fUS中区分小动脉和小静脉具有挑战性。超声定位显微镜(ULM)可以通过跟踪微泡造影剂来提高分辨率,但具有侵入性,并且缺乏动态CBV定量。在本文中,我们介绍了首个基于深度学习的fUS图像分割应用,它能够基于垂直血流方向(向上与向下)区分信号,使用基于ULM的自动标注,并实现动态CBV定量。在皮质脉管系统中,这种血流方向的差异为区分动脉和静脉提供了一种替代方法。我们在大鼠脑的fUS图像上评估了各种U-Net架构,仅使用fUS堆栈中的100个时间帧,就取得了具有竞争力的分割性能,准确率达90%,F1分数为71%,交并比为0.59。这些结果与其他成像模态中管状结构分割的结果相当。此外,在静息状态数据上训练的模型能够很好地推广到视觉刺激期间捕获的图像,凸显了其稳健性。虽然该方法未达到ULM的完全粒度,但它为推断血流方向提供了一种实用、非侵入性且具有成本效益的解决方案,在ULM不可用或不可行的场景中尤其有价值。我们的流程显示预测和实际隔室信号之间具有高线性相关系数,展示了其准确捕获血流动力学的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验