Suppr超能文献

基于瘤内坏死和肿瘤形态学的CT算法的开发与验证,用于预测小(2 - 4厘米)实性透明细胞肾细胞癌的核分级

Development and validation of a CT algorithm based on intratumoral necrosis and tumor morphology to predict the nuclear grade of small (2-4 cm) solid clear cell renal cell carcinoma.

作者信息

Qu Jianyi, Zhu Pingyi, Zhu Xianli, Li Xinyan, Zhang Wenjie, Song Xinhong, Wang Xiaofei, Dai Chenchen, Zhang Qianqian, Zhou Jianjun

机构信息

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.

出版信息

BMC Med Imaging. 2025 Jun 5;25(1):207. doi: 10.1186/s12880-025-01741-x.

Abstract

BACKGROUND

Preoperative non-invasive prediction of the World Health Organization/International Society of Urological Pathology (WHO/ISUP) nuclear grade of small clear cell renal cell carcinoma (ccRCC) can aid in decision making for active surveillance. The study aimed to develop and validate a CT algorithm for the prediction of the WHO/ISUP nuclear grade of small (2-4 cm) solid ccRCC.

METHODS

A total of 233 patients with 233 ccRCCs (50 high-grade [WHO/ISUP grades 3-4] and 183 low-grade [WHO/ISUP grades 1-2]) in the initial cohort were enrolled in this study. The tumor necrosis (presence of necrosis, proportion of necrosis, and tumor necrosis score [TNS]) and tumor morphology (five grades) were retrospectively evaluated using contrast-enhanced CT. A four-tiered CT score based on TNS and shape irregularity score (SIS) was constructed using logistic regression and receiver operating characteristic (ROC) curve analyses. The effectiveness of the four-tiered CT score was confirmed through an external validation cohort (218 ccRCCs from 218 patients, including 42 high-grade and 176 low-grade).

RESULTS

The TNS and tumor morphologies significantly differed between high-grade and low-grade ccRCCs (both P < 0.001). For diagnosis of high-grade ccRCC, the TNS and SIS achieved the area under the ROC curve (AUC) values of 0.697 and 0.731, respectively. The four-tiered CT score had an interobserver agreement of 0.677 (Cohen kappa), and achieved the AUC values of 0.793 and 0.781 in the initial and validation cohorts, respectively. The CT score of ≥ 3 exhibited a sensitivity of 54.00% and 54.76% in the initial and validation cohorts, respectively, with corresponding specificity of 90.16% and 88.07%, accuracy of 82.40% and 81.65%, positive predictive value of 60.00% and 52.27%, and negative predictive value (NPV) of 87.77% and 89.08%.

CONCLUSIONS

The TNS based on the number and size of necrotic foci could help diagnose high-grade ccRCC. The developed CT score algorithm achieved moderate AUC and high NPV for the diagnosis of high-grade ccRCC, which might facilitate active surveillance for ccRCC with a diameter of 2-4 cm.

摘要

背景

术前对世界卫生组织/国际泌尿病理学会(WHO/ISUP)核分级的小透明细胞肾细胞癌(ccRCC)进行非侵入性预测有助于制定主动监测的决策。本研究旨在开发并验证一种CT算法,用于预测小(2 - 4厘米)实性ccRCC的WHO/ISUP核分级。

方法

本研究纳入了初始队列中的233例患者的233个ccRCC(50个高级别[WHO/ISUP 3 - 4级]和183个低级别[WHO/ISUP 1 - 2级])。使用增强CT对肿瘤坏死情况(坏死的存在、坏死比例和肿瘤坏死评分[TNS])和肿瘤形态(五个等级)进行回顾性评估。基于TNS和形状不规则性评分(SIS)构建了一个四级CT评分,采用逻辑回归和受试者操作特征(ROC)曲线分析。通过外部验证队列(来自218例患者的218个ccRCC,包括42个高级别和176个低级别)确认了四级CT评分的有效性。

结果

高级别和低级别ccRCC之间的TNS和肿瘤形态存在显著差异(均P < 0.001)。对于高级别ccRCC的诊断,TNS和SIS的ROC曲线下面积(AUC)值分别为0.697和0.731。四级CT评分的观察者间一致性为0.677(Cohen kappa),在初始队列和验证队列中的AUC值分别为0.793和0.781。CT评分为≥3在初始队列和验证队列中的敏感性分别为54.00%和54.76%,相应的特异性为90.16%和88.07%,准确性为82.40%和81.65%,阳性预测值为60.00%和52.27%,阴性预测值(NPV)为87.77%和89.08%。

结论

基于坏死灶数量和大小的TNS有助于诊断高级别ccRCC。所开发的CT评分算法在诊断高级别ccRCC时具有中等的AUC和较高的NPV,这可能有助于对直径为2 - 4厘米的ccRCC进行主动监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ef/12143066/aed281d8ed99/12880_2025_1741_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验