Suppr超能文献

肯尼亚孕妇和产后妇女对长效暴露前预防的偏好:离散选择实验的结果

Long-acting pre-exposure prophylaxis preferences among pregnant and postpartum women in Kenya: results from a discrete choice experiment.

作者信息

Concepcion Tessa, Kinuthia John, Otieno Felix A, Akim Eunita, Flaherty Brian P, Gómez Laurén, John-Stewart Grace, Nzove Emmaculate M, Ngumbau Nancy, Mogaka Jerusha N, Odhiambo Ben, Wagner Anjuli D, Watoyi Salphine, Pintye Jillian

机构信息

Department of Global Health, University of Washington, Seattle, (Concepcion, John-Stewart, Wagner and Pintye).

Research and Programs Department, Kenyatta National Hospital, Nairobi, Kenya, (Kinuthia, Otieno, Akim, Nzove, Ngumbau, Odhiambo, Watoyi and Pintye).

出版信息

AJOG Glob Rep. 2025 Apr 8;5(2):100494. doi: 10.1016/j.xagr.2025.100494. eCollection 2025 May.

Abstract

BACKGROUND

New long-acting HIV pre-exposure prophylaxis (LA-PrEP) methods may address adherence barriers during pregnant and postpartum periods, when HIV risk is elevated. Understanding their preferences for LA-PrEP is essential for person-centered HIV prevention in maternal and child health (MCH) systems, yet evidence on preferred attributes is limited.

OBJECTIVE

To estimate pregnant and postpartum women's preferred PrEP attributes using a discrete choice experiment (DCE) at important timepoints in the perinatal period.

STUDY DESIGN

From February 2023 to July 2024, we conducted a DCE among 513 HIV-negative pregnant and postpartum women taking daily oral PrEP in Kisumu and Siaya, Kenya, enrolled between 24-32 weeks gestation and a high HIV risk score. Participants completed the DCE with 12 choice sets at their third antepartum (median gestational age: 37.0 weeks) and/or 6-month postpartum visits. Attributes included effectiveness, form and dosing, safety data, side effects, collection place, cost, and multipurpose prevention (postpartum only). We fit effects-coded choice data to a conditional logit model, latent class analysis (LCA) for preference heterogeneity, and univariate multinomial logistic regressions to predict class membership by individual characteristics.

RESULTS

A total of 513 women completed the DCE at least once (151 at third antepartum, 509 at 6-month postpartum). Every 2-month injections were strongly preferred, showing the highest positive preference weight (pregnant: 1.22, 95% CI: 1.12-1.33; postpartum: 1.24, 95% CI: 1.18-1.30). Four latent classes emerged: "Flexible PrEP Adopters" (37.2%), "Safe and Effective Injection Preference" (16.5%), "Strong Injection Preference" (37.7%), and "Oral PrEP Preference" (8.6%). Higher parity was associated with lower odds of membership in "Flexible PrEP Adopters" (OR=0.6, 95% CI: 0.4-0.8, .001), "Safe and Effective Injection Preference" (OR=0.6, 95% CI: 0.4-0.8, .003), and "Strong Injection Preference" (OR=0.7, 95% CI: 0.5-1, .027) compared to "Oral PrEP preference."

CONCLUSIONS

Strong preferences for every 2-month injectables emphasize the need to prioritize LA-PrEP in this population. ANC settings can support diverse PrEP preference profiles with tailored counseling to account for individual preferences, PrEP experience, and obstetric history.

摘要

背景

新的长效HIV暴露前预防(LA-PrEP)方法可能解决怀孕和产后期间HIV风险升高时的依从性障碍。了解她们对LA-PrEP的偏好对于母婴健康(MCH)系统中以患者为中心的HIV预防至关重要,但关于偏好属性的证据有限。

目的

在围产期的重要时间点,使用离散选择实验(DCE)评估怀孕和产后妇女对PrEP的偏好属性。

研究设计

2023年2月至2024年7月,我们在肯尼亚基苏木和锡亚的513名HIV阴性的怀孕和产后妇女中进行了DCE,这些妇女在妊娠24 - 32周期间入组且HIV风险评分高,每日口服PrEP。参与者在第三次产前检查(中位孕周:37.0周)和/或产后6个月访视时完成了包含12个选择集的DCE。属性包括有效性、剂型和给药方式、安全性数据、副作用、采集地点、成本以及多用途预防(仅产后)。我们将效应编码的选择数据拟合到条件logit模型、用于偏好异质性的潜在类别分析(LCA)以及用于通过个体特征预测类别成员资格的单变量多项逻辑回归。

结果

共有513名妇女至少完成了一次DCE(第三次产前检查时151名,产后6个月时509名)。每2个月注射一次的方式受到强烈偏好,显示出最高的正偏好权重(怀孕:1.22,95%CI:1.12 - 1.33;产后:1.24,95%CI:1.18 - 1.30)。出现了四个潜在类别:“灵活的PrEP采用者”(37.2%)、“安全有效的注射偏好者”(16.5%)、“强烈注射偏好者”(37.7%)和“口服PrEP偏好者”(8.6%)。与“口服PrEP偏好者”相比,较高的产次与属于“灵活的PrEP采用者”(OR = 0.6,95%CI:0.4 - 0.8,.001)、“安全有效的注射偏好者”(OR = 0.6,95%CI:0.4 - 0.8,.003)和“强烈注射偏好者”(OR = 0.7,95%CI:0.5 - 1,.027)的较低概率相关。

结论

对每2个月注射一次的强烈偏好强调了在该人群中优先考虑LA-PrEP的必要性。产前保健机构可以通过提供量身定制的咨询来支持不同的PrEP偏好概况,以考虑个体偏好、PrEP使用经验和产科病史。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ef/12138433/dd818bd0355c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验