Kim Han G, Gauthier Marie-Pierre L, Higgs Aidan, Hernandez Denise A, Zhou Mingqi, Brant Jason O, Bacher Rhonda L, Darden Dijoia B, Wallet Shannon M, Mathews Clayton E, Efron Philip A, Kladde Michael P, Maile Robert
Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, United States.
Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States.
bioRxiv. 2025 May 20:2025.05.15.654340. doi: 10.1101/2025.05.15.654340.
Severe burn injury induces long-lasting immune dysfunction, but the molecular mechanisms underlying this phenomenon remain unclear. We hypothesized that burn injury leads to epigenetic and transcriptional reprogramming of innate immune cells. Splenic F4/80⁺ macrophages were isolated from mice at days 2, 9, and 14 days post-20% contact burn injury. Targeted transcriptomics and MAPit single-molecule chromatin profiling were used to assess immune, metabolic, and epigenetic changes. Canonical pathway analysis was performed to infer functional shifts over time. Burn injury induced a biphasic response in macrophages. Early after injury (Day 2), there was broad transcriptional suppression and epigenetic silencing of inflammatory regulators, including , , and . Over time (Days 9 and 14), loci associated with anti-inflammatory mediators such as and exhibited progressive chromatin opening and transcriptional upregulation. Metabolic gene profiles revealed persistent suppression of mitochondrial and oxidative phosphorylation programs. Canonical pathway analysis demonstrated early IL-10 signaling activation with sustained suppression of classical macrophage activation pathways. Chromatin architecture changes included nucleosome sliding and ejection events, consistent with dynamic, locus-specific regulation. This work challenges the classical notion of burn-induced immune suppression as purely a consequence of systemic inflammation. Instead, we reveal a programmed and locus-specific epigenetic architecture that may shape macrophage immune and metabolic function long after the acute phase.
严重烧伤会导致长期的免疫功能障碍,但其背后的分子机制仍不清楚。我们假设烧伤会导致固有免疫细胞的表观遗传和转录重编程。在20%接触性烧伤损伤后第2天、第9天和第14天从小鼠中分离出脾脏F4/80⁺巨噬细胞。使用靶向转录组学和MAPit单分子染色质分析来评估免疫、代谢和表观遗传变化。进行经典通路分析以推断随时间的功能变化。烧伤损伤在巨噬细胞中诱导了双相反应。损伤后早期(第2天),包括 、 和 在内的炎症调节因子出现广泛的转录抑制和表观遗传沉默。随着时间的推移(第9天和第14天),与抗炎介质如 和 相关的基因座表现出渐进性的染色质开放和转录上调。代谢基因谱显示线粒体和氧化磷酸化程序持续受到抑制。经典通路分析表明早期IL-10信号激活,同时经典巨噬细胞激活通路持续受到抑制。染色质结构变化包括核小体滑动和排出事件,这与动态的、基因座特异性调控一致。这项工作挑战了烧伤诱导免疫抑制纯粹是全身炎症结果的经典观念。相反,我们揭示了一种程序化的、基因座特异性的表观遗传结构,它可能在急性期后很长时间塑造巨噬细胞的免疫和代谢功能。