Suppr超能文献

AttentionAML:一种基于注意力机制的深度学习框架,用于急性髓系白血病的精确分子分类。

AttentionAML: An Attention-based Deep Learning Framework for Accurate Molecular Categorization of Acute Myeloid Leukemia.

作者信息

Li Lusheng, Khoury Joseph D, Wang Jieqiong, Wan Shibiao

机构信息

Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.

Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.

出版信息

bioRxiv. 2025 May 22:2025.05.20.655179. doi: 10.1101/2025.05.20.655179.

Abstract

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy defined by aberrant clonal expansion of abnormal myeloid progenitor cells. Characterized by morphological, molecular, and genetic alterations, AML encompasses multiple distinct subtypes that would exhibit subtype-specific responses to treatment and prognosis, underscoring the critical need of accurately identifying AML subtypes for effective clinical management and tailored therapeutic approaches. Traditional wet lab approaches such as immunophenotyping, cytogenetic analysis, morphological analysis, or molecular profiling to identify AML subtypes are labor-intensive, costly, and time-consuming. To address these challenges, we propose , a novel attention-based deep learning framework for accurately categorizing AML subtypes based on transcriptomic profiling only. Benchmarking tests based on 1,661 AML patients suggested that AttentionAML outperformed state-of-the-art methods across all evaluated metrics (accuracy: 0.96, precision: 0.96, recall of 0.96, F1-score: 0.96, and Matthews correlation coefficient: 0.96). Furthermore, we also demonstrated the superiority of AttentionAML over conventional approaches in terms of AML patient clustering visualization and subtype-specific gene marker characterization. We believe AttentionAML will bring remarkable positive impacts on downstream AML risk stratification and personalized treatment design. To enhance its impact, a user-friendly Python package implementing AttentionAML is publicly available at https://github.com/wan-mlab/AttentionAML.

摘要

急性髓系白血病(AML)是一种侵袭性血液系统恶性肿瘤,由异常髓系祖细胞的异常克隆性扩增所定义。AML具有形态学、分子和遗传学改变的特征,包含多个不同的亚型,这些亚型对治疗和预后会表现出亚型特异性反应,这突出了准确识别AML亚型对于有效临床管理和量身定制治疗方法的迫切需求。传统的湿实验室方法,如免疫表型分析、细胞遗传学分析、形态学分析或分子谱分析来识别AML亚型,既费力、成本高又耗时。为应对这些挑战,我们提出了AttentionAML,这是一种新颖的基于注意力机制的深度学习框架,仅基于转录组谱就能准确分类AML亚型。基于1661例AML患者的基准测试表明,AttentionAML在所有评估指标上均优于现有方法(准确率:0.96,精确率:0.96,召回率:0.96,F1分数:0.96,马修斯相关系数:0.96)。此外,我们还在AML患者聚类可视化和亚型特异性基因标志物表征方面证明了AttentionAML优于传统方法。我们相信AttentionAML将对下游AML风险分层和个性化治疗设计带来显著的积极影响。为增强其影响力,一个实现AttentionAML的用户友好型Python包可在https://github.com/wan-mlab/AttentionAML上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dae3/12139891/39749b0ed252/nihpp-2025.05.20.655179v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验