Idanwekhai Kelvin P, Shastry Shriarjun, Minzoni Arianna, Hurst Morgan R, Barbieri Eduardo, Muratov Eugene N, Daniele Michael A, Menegatti Stefano, Tropsha Alexander
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
bioRxiv. 2025 May 24:2025.05.23.655859. doi: 10.1101/2025.05.23.655859.
Adeno-associated viral (AAV) vectors for gene therapy are becoming integral to modern medicine, providing therapeutic options for diseases once deemed incurable. Currently, optimizing viral vector purification is a critical bottleneck in the gene therapy industry, impacting product efficacy and safety as well as accessibility and cost to patients. Traditional optimization methods are resource-intensive and often fail to adjust the purification process parameters to maximize the resulting product yield and quality. To address this challenge, we developed a machine learning framework that leverages Bayesian optimization to systematically refine affinity chromatography parameters (sample load, flow rate, and the formulation of chromatographic media) to improve AAV purification. The efficiency of this closed-loop workflow in iteratively optimizing the vector's yield, purity, and transduction efficiency was demonstrated by purifying clinically-relevant serotypes AAV2, AAV5, and AAV9 from HEK293 cell lysates using the affinity adsorbent AAVidity. We show that three cycles of Bayesian optimization elevated yields from a baseline of 70% to 99%, while reducing host-cell impurities by 230-to-400-fold across all serotypes. The optimized parameters consistently produced vectors with high purity and preserved high transduction activity, essential for therapeutic efficacy and safety, demonstrating serotype versatility - a key challenge in AAV manufacturing. By streamlining parameter optimization and enhancing productivity, our adaptive machine learning framework accelerates process development and reduces costs, advancing the accessibility and clinical translation of AAV-based gene therapies.
用于基因治疗的腺相关病毒(AAV)载体正成为现代医学不可或缺的一部分,为曾经被认为无法治愈的疾病提供了治疗选择。目前,优化病毒载体纯化是基因治疗行业的一个关键瓶颈,影响着产品的疗效和安全性以及患者的可及性和成本。传统的优化方法资源消耗大,而且往往无法调整纯化工艺参数以实现最终产品产量和质量的最大化。为应对这一挑战,我们开发了一个机器学习框架,该框架利用贝叶斯优化来系统地优化亲和色谱参数(样品负载量、流速和色谱介质配方),以改进AAV纯化。通过使用亲和吸附剂AAVidity从HEK293细胞裂解物中纯化临床相关血清型AAV2、AAV5和AAV9,证明了这种闭环工作流程在迭代优化载体产量、纯度和转导效率方面的效率。我们表明,三个周期的贝叶斯优化将产量从70%的基线提高到99%,同时在所有血清型中,宿主细胞杂质减少了230至400倍。优化后的参数始终能产生高纯度且保持高转导活性的载体,这对于治疗效果和安全性至关重要,展示了血清型通用性——这是AAV生产中的一个关键挑战。通过简化参数优化并提高生产率,我们的自适应机器学习框架加速了工艺开发并降低了成本,推动了基于AAV的基因治疗的可及性和临床转化。