Suppr超能文献

基于迭代混合模型的重组腺相关病毒(rAAV)生产优化

Iterative hybrid model based optimization of rAAV production.

作者信息

Müller Claudio, Siegwart Gerald, Heider Susanne, Sokolov Michael, Botros Angela, Umprecht Alexandra, von Stosch Moritz, Cruz Bournazou Mariano Nicolas

机构信息

DataHow, Zurich, Switzerland.

Pharmaceutical Sciences, R&D, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria.

出版信息

Biotechnol Prog. 2025 Mar 24:e70006. doi: 10.1002/btpr.70006.

Abstract

Changes in serotype or genetic payload of recombinant adeno associated virus (rAAVs) gene therapies require adapting the transfection conditions of the upstream HEK293 cultivations. This study adopts an iterative model-based experiment design approach, where increasing data availability is leveraged to evolve models of different complexity. Initial models based on data from shaker flask runs guided the design of the first round at Ambr250 scale. With Ambr250 data becoming available, hybrid models capturing process state evolutions and historical models incorporating these evolutions to predict rAAV titer, were developed. These models were then combined into a full model approach, which was utilized within a Bayesian Optimization framework for the design of a second round of Ambr250 scale runs. The iterative approach was tested across different projects applying transfer learning to enhance the predictive power and improve the subsequent optimization. The approach was benchmarked against a statistical Design of Experiment method. The results show that the model-based experiment design consistently (and across projects) produces higher rAAV titer values than the benchmark approach (Project C: 4.4% or 7.0% increases in titer values relative to the response surface modeling approach for ELISA and ddPCR, respectively; Project D: 32.4% or 10.9% increases in titer values relative to the standard DoE-screening pick for ELISA and ddPCR, respectively), effectively optimizing the transfection mixture composition. The combination of propagation and historical models, augmented by transfer learning and an ever-increasing amount of data, enhanced the process design workflow, contributing to improved rAAV production through efficient transfection strategies.

摘要

重组腺相关病毒(rAAV)基因疗法的血清型或基因载体发生变化时,需要调整上游HEK293细胞培养的转染条件。本研究采用基于迭代模型的实验设计方法,利用不断增加的数据可用性来发展不同复杂度的模型。基于摇瓶实验数据的初始模型指导了第一轮Ambr250规模实验的设计。随着Ambr250实验数据的获得,开发了捕获过程状态演变的混合模型以及将这些演变纳入其中以预测rAAV滴度的历史模型。然后将这些模型组合成一种完整模型方法,并在贝叶斯优化框架内用于设计第二轮Ambr250规模实验。通过应用迁移学习对不同项目测试了这种迭代方法,以增强预测能力并改进后续优化。该方法以统计实验设计方法为基准进行了测试。结果表明,基于模型的实验设计始终(且在各个项目中)产生比基准方法更高的rAAV滴度值(项目C:相对于ELISA和ddPCR的响应面建模方法,滴度值分别提高4.4%或7.0%;项目D:相对于ELISA和ddPCR的标准实验设计筛选选择,滴度值分别提高32.4%或10.9%),有效地优化了转染混合物的组成。通过迁移学习和不断增加的数据量增强的增殖模型和历史模型的结合,改进了工艺设计工作流程,通过高效的转染策略有助于提高rAAV的产量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验