文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

类风湿关节炎中端粒相关生物标志物作用机制的转录组学见解

Transcriptomic insights into the mechanism of action of telomere-related biomarkers in rheumatoid arthritis.

作者信息

Feng Lijuan, Bai Kaiyong, He Limeng, Wang Hao, Zhang Wei

机构信息

Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.

出版信息

Front Immunol. 2025 May 22;16:1585895. doi: 10.3389/fimmu.2025.1585895. eCollection 2025.


DOI:10.3389/fimmu.2025.1585895
PMID:40475761
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12137363/
Abstract

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease. The mechanism by which telomeres are involved in the development of RA remains unclear. This study aimed to investigate the relationship between RA and telomeres. METHODS: In this study, we identified differentially expressed genes (DEGs) between RA and control samples by analyzing transcriptome data from a public database. Candidate genes were determined through the intersection of DEGs and telomere-related genes. Biomarkers were subsequently identified using machine learning algorithms, receiver operating characteristic analysis, and expression level comparisons between RA and control samples. Additionally, a nomogram model was employed to predict the diagnostic ability of biomarkers for RA. Subsequently, the potential mechanisms of these biomarkers in RA were further explored using gene set enrichment analysis (GSEA), subcellular localization, chromosome localization, immune infiltration, functional analysis, molecular regulatory networks, drug prediction, and molecular docking. Furthermore, the expression of biomarkers between RA and control samples was validated through experiments. RESULTS: ABCC4, S100A8, VAMP2, PIM2, and ISG20 were identified as biomarkers. These biomarkers demonstrated excellent diagnostic ability for RA through a nomogram. Most of the biomarkers were found to be enriched in processes related to allograft rejection and the cell cycle. Subcellular and chromosomal localization analyses indicated that ABCC4 is localized to the plasma membrane, ISG20 to the mitochondria, PIM2 and S100A8 to the cytoplasm, and VAMP2 to the nucleus. Additionally, nine differential immune cells were identified between RA and control samples, with a strong correlation observed between the biomarkers and activated CD4 memory T cells. S100A8, PIM2, and VAMP2 exhibited high similarity to other biomarkers. Furthermore, three transcription factors (TFs), 121 microRNAs (miRNAs), and six long non-coding RNAs (lncRNAs) were identified as targeted biomarkers. Five drugs-methotrexate, adefovir, furosemide, azathioprine, and cefmetazole-were also identified as targeted biomarkers. Notably, ABCC4 interacted with all five drugs and exhibited the strongest binding energy with methotrexate. The results of the experiments were consistent with those obtained from the bioinformatics analysis. CONCLUSION: This study identified five biomarkers-ABCC4, S100A8, VAMP2, PIM2, and ISG20-and offered new insights into potential therapeutic strategies for RA.

摘要

背景:类风湿关节炎(RA)是一种自身免疫性炎症性疾病。端粒参与RA发病的机制尚不清楚。本研究旨在探讨RA与端粒之间的关系。 方法:在本研究中,我们通过分析公共数据库中的转录组数据,确定了RA样本与对照样本之间的差异表达基因(DEG)。通过DEG与端粒相关基因的交集确定候选基因。随后,使用机器学习算法、受试者工作特征分析以及RA样本与对照样本之间的表达水平比较来鉴定生物标志物。此外,采用列线图模型预测生物标志物对RA的诊断能力。随后,使用基因集富集分析(GSEA)、亚细胞定位、染色体定位、免疫浸润、功能分析、分子调控网络、药物预测和分子对接等方法进一步探索这些生物标志物在RA中的潜在机制。此外,通过实验验证了RA样本与对照样本之间生物标志物的表达。 结果:ABCC4、S100A8、VAMP2、PIM2和ISG20被鉴定为生物标志物。这些生物标志物通过列线图显示出对RA优异的诊断能力。发现大多数生物标志物在与同种异体移植排斥和细胞周期相关的过程中富集。亚细胞和染色体定位分析表明,ABCC4定位于质膜,ISG20定位于线粒体,PIM2和S100A8定位于细胞质,VAMP2定位于细胞核。此外,在RA样本与对照样本之间鉴定出9种差异免疫细胞,生物标志物与活化的CD4记忆T细胞之间存在强相关性。S100A8、PIM2和VAMP2与其他生物标志物表现出高度相似性。此外,还鉴定出3种转录因子(TF)、121种微小RNA(miRNA)和6种长链非编码RNA(lncRNA)作为靶向生物标志物。还确定了5种药物——甲氨蝶呤、阿德福韦、呋塞米、硫唑嘌呤和头孢美唑——作为靶向生物标志物。值得注意的是,ABCC4与所有5种药物相互作用,并且与甲氨蝶呤表现出最强的结合能。实验结果与生物信息学分析结果一致。 结论:本研究鉴定出5种生物标志物——ABCC4、S100A8、VAMP2、PIM2和ISG20——并为RA的潜在治疗策略提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/0f7ed2572b70/fimmu-16-1585895-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/624208440ca2/fimmu-16-1585895-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/57d93609848b/fimmu-16-1585895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/2c87cb15f0b1/fimmu-16-1585895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/2052f095ba58/fimmu-16-1585895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/f542de99cb60/fimmu-16-1585895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/31e3f66a3601/fimmu-16-1585895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/3df0f49adacd/fimmu-16-1585895-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/07b6d4ef2ad2/fimmu-16-1585895-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/0f7ed2572b70/fimmu-16-1585895-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/624208440ca2/fimmu-16-1585895-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/57d93609848b/fimmu-16-1585895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/2c87cb15f0b1/fimmu-16-1585895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/2052f095ba58/fimmu-16-1585895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/f542de99cb60/fimmu-16-1585895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/31e3f66a3601/fimmu-16-1585895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/3df0f49adacd/fimmu-16-1585895-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/07b6d4ef2ad2/fimmu-16-1585895-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/12137363/0f7ed2572b70/fimmu-16-1585895-g009.jpg

相似文献

[1]
Transcriptomic insights into the mechanism of action of telomere-related biomarkers in rheumatoid arthritis.

Front Immunol. 2025-5-22

[2]
The shared biomarkers and immune landscape in psoriatic arthritis and rheumatoid arthritis: Findings based on bioinformatics, machine learning and single-cell analysis.

PLoS One. 2024

[3]
Identification of diagnostic genes and drug prediction in metabolic syndrome-associated rheumatoid arthritis by integrated bioinformatics analysis, machine learning, and molecular docking.

Front Immunol. 2024

[4]
Identification biomarkers and therapeutic targets of disulfidptosis-related in rheumatoid arthritis via bioinformatics, molecular dynamics simulation, and experimental validation.

Sci Rep. 2025-3-13

[5]
Identifying hub circadian rhythm biomarkers and immune cell infiltration in rheumatoid arthritis.

Front Immunol. 2022

[6]
Exploration and Identification of Potential Biomarkers and Immune Cell Infiltration Analysis in Synovial Tissue of Rheumatoid Arthritis.

Int J Rheum Dis. 2025-2

[7]
Machine learning and weighted gene co-expression network analysis identify a three-gene signature to diagnose rheumatoid arthritis.

Front Immunol. 2024

[8]
Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis.

J Transl Med. 2021-1-6

[9]
Identifying Immune Cell Infiltration and Effective Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis.

Front Immunol. 2021

[10]
Identification of Disease-Specific Hub Biomarkers and Immune Infiltration in Osteoarthritis and Rheumatoid Arthritis Synovial Tissues by Bioinformatics Analysis.

Dis Markers. 2021

本文引用的文献

[1]
Dual Targeting Biomimetic Carrier-Free Nanosystems for Photo-Chemotherapy of Rheumatoid Arthritis via Macrophage Apoptosis and Re-Polarization.

Adv Sci (Weinh). 2025-3

[2]
High carriage and possible hidden spread of multidrug-resistant Salmonella among asymptomatic workers in Yulin, China.

Nat Commun. 2024-11-26

[3]
How to write an ending: Telomere replication as a multistep process.

DNA Repair (Amst). 2024-12

[4]
Suppression of overactivated immunity in the early stage is the key to improve the prognosis in severe burns.

Front Immunol. 2024

[5]
Transcriptomics explores potential mechanisms for the development of Primary Sjogren's syndrome to diffuse large B-cell lymphoma in B cells.

BMC Immunol. 2024-7-30

[6]
Immunohistochemical localization of proteins involved in exocytosis of glutamate from P2X3 purinoceptor-expressing subserosal afferent nerve endings in the rat gastric antrum.

Acta Histochem. 2024-5

[7]
Computational inhibition of S100A8 (calgranulin A) as a potential non-invasive biomarker for rheumatoid arthritis.

In Silico Pharmacol. 2024-4-6

[8]
PIM Kinases as Potential Biomarkers and Therapeutic Targets in Inflammatory Arthritides.

Int J Mol Sci. 2024-3-8

[9]
ABCC4 impacts megakaryopoiesis and protects megakaryocytes against 6-mercaptopurine induced cytotoxicity.

Drug Resist Updat. 2024-1

[10]
A nomogram for predicting prognosis of patients with cervical cerclage.

Heliyon. 2023-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索