Suppr超能文献

弥合语言差距:自然语言处理和语音识别在英语口语教学中的作用。

Bridging language gaps: The role of NLP and speech recognition in oral english instruction.

作者信息

Dubey Parul, Dubey Pushkar, Raja Rohit, Kshatri Sapna Singh

机构信息

Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India.

Department of Management, Pandit Sundarlal Sharma (Open) University Chhattisgarh, India.

出版信息

MethodsX. 2025 May 7;14:103359. doi: 10.1016/j.mex.2025.103359. eCollection 2025 Jun.

Abstract

The Natural Language Processing (NLP) and speech recognition have transformed language learning by providing interactive and real-time feedback, enhancing oral English proficiency. These technologies facilitate personalized and adaptive learning, making pronunciation and fluency improvement more efficient. Traditional methods lack real-time speech assessment and individualized feedback, limiting learners' progress. Existing speech recognition models struggle with diverse accents, variations in speaking styles, and computational efficiency, reducing their effectiveness in real-world applications. This study utilizes three datasets-including a custom dataset of 882 English teachers, the CMU ARCTIC corpus, and LibriSpeech Clean-to ensure generalizability and robustness. The methodology integrates Hidden Markov Models for speech recognition, NLP-based text analysis, and computer vision-based lip movement detection to create an adaptive multimodal learning system. The novelty of this study lies in its real-time Bayesian feedback mechanism and multimodal integration of audio, visual, and textual data, enabling dynamic and personalized oral instruction. Performance is evaluated using recognition accuracy, processing speed, and statistical significance testing. The continuous HMM model achieves up to 97.5 % accuracy and significantly outperforms existing models such as MLP-LSTM and GPT-3.5-turbo ( < 0.05) across all datasets. Developed a multimodal system that combines speech, text, and visual data to enhance real-time oral English learning.•Collected and annotated a diverse dataset of English speech recordings from teachers across various accents and speaking styles.•Designed an adaptive feedback framework to provide learners with immediate, personalized insights into their pronunciation and fluency.

摘要

自然语言处理(NLP)和语音识别通过提供交互式实时反馈改变了语言学习方式,提高了英语口语水平。这些技术促进了个性化和自适应学习,使发音和流利度的提高更加高效。传统方法缺乏实时语音评估和个性化反馈,限制了学习者的进步。现有的语音识别模型在处理不同口音、说话风格变化和计算效率方面存在困难,降低了它们在实际应用中的有效性。本研究使用了三个数据集——包括一个由882名英语教师组成的自定义数据集、卡内基梅隆大学北极语料库和LibriSpeech Clean——以确保通用性和稳健性。该方法集成了用于语音识别的隐马尔可夫模型、基于NLP的文本分析和基于计算机视觉的唇动检测,以创建一个自适应多模态学习系统。本研究的新颖之处在于其实时贝叶斯反馈机制以及音频、视觉和文本数据的多模态集成,实现了动态和个性化的口语教学。使用识别准确率、处理速度和统计显著性测试来评估性能。连续隐马尔可夫模型在所有数据集上的准确率高达97.5%,显著优于现有模型,如MLP-LSTM和GPT-3.5-turbo(<0.05)。开发了一个结合语音、文本和视觉数据的多模态系统,以增强实时英语口语学习。•收集并标注了来自不同口音和说话风格教师的多样化英语语音录音数据集。•设计了一个自适应反馈框架,为学习者提供关于其发音和流利度的即时、个性化见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e09/12139008/e7ea63e83b24/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验