Pan Meiling, Cui Xiuhua, Jing Qun, Duan Haiming, Ouyang Fangping, Wu Rong
Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology, Xinjiang University 777 Huarui Street Urumqi 830017 China
School of Physics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Central South University Changsha 410083 China
RSC Adv. 2025 Jun 5;15(24):19079-19087. doi: 10.1039/d5ra02327k. eCollection 2025 Jun 4.
Two-dimensional hexagonal MBenes (h-MBenes), derived from h-MAB phases, exhibit great potential for electrochemical applications due to their unique electronic and catalytic properties. Using first-principles calculations, we explored single-atom transition metals (TMs) supported on h-MBene HfBO (TM@HfBO) as bifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). TM@HfBO structures demonstrated excellent thermal stability and high electrical conductivity, making them suitable for electrocatalysis. For HER, Nb@HfBO showed outstanding activity with a near-ideal hydrogen adsorption free energy (Δ = -0.01 eV), surpassing even platinum. For OER, ferromagnetic TM@HfBO systems (TM = Fe, Co, Ni) exhibited high catalytic potential, with Ni@HfBO achieving the lowest overpotential ( = 0.48 V), outperforming IrO ( = 0.56 V). These results highlight TM@HfBO as a promising alternative to noble-metal-based catalysts. Our findings provide a foundation for designing cost-effective, high-performance electrocatalysts for overall water splitting and underscore the potential of HfBO-based materials in sustainable energy applications.
二维六方MBenes(h-MBenes)源自h-MAB相,由于其独特的电子和催化性能,在电化学应用中展现出巨大潜力。通过第一性原理计算,我们探索了负载在h-MBene HfBO(TM@HfBO)上的单原子过渡金属(TMs)作为析氢反应(HER)和析氧反应(OER)的双功能催化剂。TM@HfBO结构表现出优异的热稳定性和高电导率,使其适用于电催化。对于HER,Nb@HfBO表现出出色的活性,具有接近理想的氢吸附自由能(Δ = -0.01 eV),甚至超过了铂。对于OER,铁磁TM@HfBO体系(TM = Fe、Co、Ni)表现出高催化潜力,其中Ni@HfBO实现了最低的过电位( = 0.48 V),优于IrO( = 0.56 V)。这些结果突出了TM@HfBO作为基于贵金属的催化剂的有前途的替代品。我们的发现为设计用于整体水分解的经济高效、高性能电催化剂提供了基础,并强调了基于HfBO的材料在可持续能源应用中的潜力。