Baer Jason, Little Mark, Aquino Jenna, van der Geer Anneke, Sánchez-Quinto Andrés, Ballard Ashton, Lawrence Catherine, Carilli Jessica, Hartmann Aaron, Rohwer Forest
Department of Biology, San Diego State University, San Diego, CA 92182, United States.
Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 01451, United States.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf110.
Coral reef ecosystems rely on microorganisms to carry out biogeochemical processes essential to the survival of corals and the reef food web. However, widespread shifts from coral to algal dominance as a result of anthropogenic pressures have promoted microbial communities that compromise reef health through deoxygenation and disease. These degraded reefs become locked in a "microbialized" state characterized by high microbial biomass, low oxygen, and heightened pathogenic activity that stymie efforts to outplant corals onto the reef, a common approach applied to restore these ecosystems. Over 18 months, we compared viral and microbial dynamics alongside physical and chemical parameters ("water quality") between two coral outplanting sites and two midwater reef mesocosms called Coral Arks. Seafloor sites exhibited microbialization, whereas Arks maintained conditions with higher viral abundances and virus-to-microbe ratios, smaller and less abundant microorganisms, and consistently higher dissolved oxygen, water flow, and light availability. These conditions, which we term "viralized", supported enhanced coral growth and survival, greater benthic diversity, increased coral recruitment, reduced turf and macroalgae, and higher fish abundance compared to outplanting sites. Despite these benefits, analysis of microbial carbon metabolism genes revealed an underlying trend towards microbialization at both sites, reflecting larger-scale regional decline. These findings emphasize that microbial and physicochemical conditions are drivers of reef restoration outcomes; to be successful, restoration strategies must target the underlying environmental factors that support coral survival and resilience. We identify key microbial and physical variables-such as oxygen levels, flow, and viral activity-associated with viralized reef states, which should serve as focal points for developing new interventions and technologies aimed at creating conditions conducive to reef recovery.
珊瑚礁生态系统依赖微生物来进行对珊瑚生存及礁体食物网至关重要的生物地球化学过程。然而,由于人为压力导致珊瑚礁普遍从以珊瑚为主导转变为以藻类为主导,这促使了微生物群落通过脱氧和疾病损害礁体健康。这些退化的珊瑚礁陷入了一种“微生物化”状态,其特征是微生物生物量高、氧气含量低以及致病活性增强,这阻碍了将珊瑚移植到礁体上的努力,而这种移植是恢复这些生态系统常用的方法。在18个月的时间里,我们比较了两个珊瑚移植地点和两个名为“珊瑚方舟”的中层礁体中宇宙(midwater reef mesocosms)的病毒和微生物动态以及物理和化学参数(“水质”)。海底地点呈现出微生物化现象,而“珊瑚方舟”维持着具有较高病毒丰度和病毒与微生物比率、微生物更小且数量更少以及溶解氧、水流和光照可用性始终更高的条件。与移植地点相比,我们将这些条件称为“病毒化”,它们支持了珊瑚生长和存活的增强、底栖生物多样性的增加、珊瑚补充的增多、草皮藻和大型藻类的减少以及鱼类丰度的提高。尽管有这些益处,但对微生物碳代谢基因的分析揭示了两个地点都存在潜在的微生物化趋势,反映了更大范围的区域衰退。这些发现强调微生物和物理化学条件是礁体恢复结果的驱动因素;要取得成功,恢复策略必须针对支持珊瑚生存和恢复力的潜在环境因素。我们确定了与病毒化礁体状态相关的关键微生物和物理变量,如氧气水平、水流和病毒活性,这些应成为开发旨在创造有利于礁体恢复条件的新干预措施和技术的重点。