Zhang Yong, Kubota Masaaki, Shimbori Yuma, Abe Hidetoshi, Kanamura Kiyoshi
ABRI Co. Ltd., Tokyo Metropolitan University, Building P-302, 1-1 minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):36136-36147. doi: 10.1021/acsami.5c03381. Epub 2025 Jun 6.
Magnesium-based batteries present a promising alternative to lithium-ion systems due to the high abundance, volumetric capacity, and dendrite-free nature of magnesium. However, existing magnesium battery electrolytes often encounter significant limitations, including high overpotentials, limited ionic conductivity, and electrode passivation, which hinder their practical application. In this work, we report a Mg(TFSI)/diglyme (G2) electrolyte enhanced with 0.3 M lithium borohydride (LiBH), which demonstrates a marked improvement in both electrochemical stability and efficiency through the dual role of Li and BH ions. Our findings show that Li ions effectively boost ionic conductivity, enabling rapid Mg transport, while BH anions stabilize the electrode interface by forming a robust, passivation-resistant solid electrolyte interphase (SEI) layer. This electrolyte formulation achieves high Coulombic efficiency and extended cycling stability, as validated in both symmetric Mg//Mg, asymmetric Mg//Cu and full Mg//VS cells. Additionally, molecular dynamics simulations provide insight into the coordination environment of Mg and Li ions, confirming the distinct contributions of Li and BH to the electrolyte's enhanced performance. This study highlights the practical applicability of LiBH-modified Mg-based electrolytes in next-generation energy storage systems, offering a scalable pathway for developing efficient, durable magnesium batteries.
由于镁的储量丰富、体积容量大且无枝晶特性,镁基电池成为锂离子系统的一种有前景的替代方案。然而,现有的镁电池电解质常常面临显著限制,包括高过电位、有限的离子电导率和电极钝化,这些都阻碍了它们的实际应用。在这项工作中,我们报道了一种用0.3 M硼氢化锂(LiBH)增强的Mg(TFSI)/二甘醇二甲醚(G2)电解质,它通过Li离子和BH离子的双重作用在电化学稳定性和效率方面都有显著提高。我们的研究结果表明,Li离子有效地提高了离子电导率,使Mg能够快速传输,而BH阴离子通过形成坚固的、抗钝化的固体电解质界面(SEI)层来稳定电极界面。这种电解质配方实现了高库仑效率和延长的循环稳定性,在对称Mg//Mg、不对称Mg//Cu和全Mg//VS电池中均得到验证。此外,分子动力学模拟深入了解了Mg和Li离子的配位环境,证实了Li和BH对电解质增强性能的不同贡献。这项研究突出了LiBH改性的镁基电解质在下一代储能系统中的实际适用性,为开发高效、耐用的镁电池提供了一条可扩展的途径。