Singh Moirangthem Kiran, Fernandez Marion, Dilawari Rahul, Zangoui Parisa, Kenney Linda J
Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
Department of Chemistry, Dhanamanjuri University, Imphal, Manipur 795001, India.
ACS Sens. 2025 Jun 27;10(6):4232-4243. doi: 10.1021/acssensors.5c00404. Epub 2025 Jun 6.
Intracellular pH regulation is fundamental to bacterial adaptation, virulence, and survival in diverse environments. Typhimurium, a key human pathogen, exploits host and environmental pH cues to transition between planktonic, biofilm, and virulence-associated states. However, precise tools to monitor bacterial pH dynamics at subcellular resolution have been limited. Herein, we report the application of mCherryTYG, a genetically encoded pH-sensitive fluorophore optimized for fluorescence lifetime imaging microscopy (FLIM), enabling robust and high-resolution pH measurements across diverse conditions. mCherryTYG demonstrated exceptional sensitivity across a broad pH range (5.5-8.5) with consistent lifetime responses and was unaffected by temperature, buffer composition, or ionic strength. Using FLIM, we characterized the pH dynamics of across host, and biofilm contexts. Under acidic stress , maintained a uniform intracellular pH (∼6.04), providing clarity on previously debated heterogeneity. In infections of HeLa cells, existed in distinct pH environments: acidic vacuolar pH (∼5.89) and neutral pH (∼7.10). During the late infection stage, ∼17% of the bacterial population retained an acidic pH. Biofilm studies revealed stratified pH profiles with acidic pH near the bottom and neutral pH at the surface, mirroring patterns observed in other pathogens. In heterologous host models, pH gradients shape bacterial adaptation strategies. In , experienced a progressive internal pH gradient from neutral pH (∼7.10) in the anterior lumen to acidic pH (∼6.45) in the posterior. Similarly, in zebrafish, encountered acidic lysosome-rich enterocytes (∼5.84) and neutral regions (∼7.33) in the anterior gut. This study establishes mCherryTYG-FLIM as a transformative tool for studying bacterial pH regulation, revealing pH as a critical modulator of lifestyle transitions between virulence and persistence. Our findings provide new insights into host-microbe interactions and present pH as a promising target for therapeutic interventions against bacterial infections.
细胞内pH调节对于细菌在不同环境中的适应、毒力和生存至关重要。鼠伤寒沙门氏菌是一种关键的人类病原体,它利用宿主和环境pH线索在浮游、生物膜和毒力相关状态之间转变。然而,以亚细胞分辨率监测细菌pH动态的精确工具一直很有限。在此,我们报告了mCherryTYG的应用,这是一种经过基因编码的对pH敏感的荧光团,针对荧光寿命成像显微镜(FLIM)进行了优化,能够在各种条件下进行稳健且高分辨率的pH测量。mCherryTYG在较宽的pH范围(5.5 - 8.5)内表现出卓越的灵敏度,具有一致的寿命响应,并且不受温度、缓冲液组成或离子强度的影响。使用FLIM,我们表征了鼠伤寒沙门氏菌在宿主和生物膜环境中的pH动态。在酸性应激下,鼠伤寒沙门氏菌维持均匀的细胞内pH(约6.04),这为之前存在争议的异质性提供了清晰的解释。在感染HeLa细胞时,鼠伤寒沙门氏菌存在于不同的pH环境中:酸性液泡pH(约5.89)和中性pH(约7.10)。在感染后期,约17%的细菌群体保持酸性pH。生物膜研究揭示了分层的pH分布,底部附近为酸性pH,表面为中性pH,这与在其他病原体中观察到的模式相似。在异源宿主模型中,pH梯度塑造了细菌的适应策略。在秀丽隐杆线虫中,鼠伤寒沙门氏菌经历了从前肠腔中性pH(约7.10)到后肠酸性pH(约6.45)的渐进性内部pH梯度。同样,在斑马鱼中,鼠伤寒沙门氏菌在前肠遇到富含酸性溶酶体的肠细胞(约5.84)和中性区域(约7.33)。这项研究将mCherryTYG - FLIM确立为研究细菌pH调节的变革性工具,揭示了pH是鼠伤寒沙门氏菌在毒力和持久性之间生活方式转变的关键调节因子。我们的发现为宿主 - 微生物相互作用提供了新的见解,并将pH呈现为对抗细菌感染的治疗干预的一个有前景的靶点。