Constenla-Villoslada Susana, Liu Yanyan, McBride Linden, Ouma Clinton, Mutanda Nelson, Barrett Christopher B
School of Information, University of California at Berkeley, Berkeley, CA 94720.
Markets, Trade, and Institutions, International Food Policy Research Institute, Washington, DC 20005.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2416161122. doi: 10.1073/pnas.2416161122. Epub 2025 Jun 6.
The number of acutely food insecure people worldwide has doubled since 2017, increasing demand for early warning systems (EWS) that can predict food emergencies. Advances in computational methods, and the growing availability of near-real time remote sensing data, suggest that big data approaches might help meet this need. But such models have thus far exhibited low predictive skill with respect to subpopulation-level acute malnutrition indicators. We explore whether updating training data with high frequency monitoring of the predictand can help improve machine learning models' predictive performance with respect to child acute malnutrition by directly learning the dynamic determinants of rapidly evolving acute malnutrition crises. We combine supervised machine learning methods and remotely sensed feature sets with time series child anthropometric data from EWS' sentinel sites to generate accurate forecasts of acute malnutrition at operationally meaningful time horizons. These advances can enhance intertemporal and geographic targeting of humanitarian response to impending food emergencies that otherwise have unacceptably high case fatality rates.
自2017年以来,全球急性粮食不安全人口数量翻了一番,这增加了对能够预测粮食紧急情况的早期预警系统(EWS)的需求。计算方法的进步以及近实时遥感数据可用性的不断提高,表明大数据方法可能有助于满足这一需求。但迄今为止,此类模型在亚人群层面的急性营养不良指标方面表现出较低的预测能力。我们探讨通过对预测对象进行高频监测来更新训练数据,是否有助于通过直接了解快速演变的急性营养不良危机的动态决定因素,提高机器学习模型对儿童急性营养不良的预测性能。我们将监督机器学习方法和遥感特征集与来自EWS哨点的儿童人体测量时间序列数据相结合,以在具有实际操作意义的时间范围内生成急性营养不良的准确预测。这些进展可以加强对即将到来的粮食紧急情况的人道主义应对的跨期和地理定位,否则这些紧急情况的病死率会高得令人无法接受。