Suppr超能文献

利用机器学习和多种指标预测肯尼亚儿童急性营养不良情况。

Forecasting acute childhood malnutrition in Kenya using machine learning and diverse sets of indicators.

作者信息

Tadesse Girmaw Abebe, Ferguson Laura, Robinson Caleb, Kuria Shiphrah, Wanyonyi Herbert, Murage Samuel, Mburu Samuel, Dodhia Rahul, Lavista Ferres Juan M, Dilkina Bistra

机构信息

Microsoft AI for Good Research Lab, Nairobi, Kenya.

University of Southern California, Institute on Inequalities in Global Health, Los Angeles, California, United States of America.

出版信息

PLoS One. 2025 May 14;20(5):e0322959. doi: 10.1371/journal.pone.0322959. eCollection 2025.

Abstract

OBJECTIVES

Malnutrition is a leading cause of morbidity and mortality for children under-5 globally. Low- and middle-income countries, such as Kenya, bear the greatest burden of malnutrition. The Kenyan government has been collecting clinical indicators, including on malnutrition, using District Health Information Software-2 (DHIS2) for over a decade. We aim to address the existing gap in decision-makers' ability to develop and utilize malnutrition forecasting capabilities for timely interventions. Specifically, our objectives include: develop a spatio-temporal machine learning model to forecast acute malnutrition among children in Kenya using DHIS2 data, enhance forecasting capability by integrating external complementary indicators, such as publicly available satellite imagery-driven signals, and forecast acute malnutrition at various stages and time horizons, including moderate, severe, and aggregated cases.

METHODS

We propose a framework to forecast malnutrition risk for each sub-county in Kenya based on clinical indicators and remote sensory data. To achieve this, we first aggregate clinical indicators and remotely sensed satellite data, specifically gross primary productivity measurements, to the sub-county level. We then label the rate of children diagnosed with acute malnutrition at the sub-county level using the standard Integrated Food Security Phase Classification for Acute Malnutrition. We then apply and compare several methods for forecasting malnutrition risk in Kenya using data collected from January 2019 to February 2024. As a baseline, we used a Window Average model, which captures the current practice at the Kenyan Ministry of Health. We also trained machine learning models, such as Logistic Regression and Gradient Boosting, to forecast acute malnutrition risk based on observed indicators from prior months. Different metrics, mainly Area Under Receiver Operating Characteristic Curve (AUC), were used to evaluate the forecasting performance by comparing their forecast values to known values on a hold-out test set.

RESULTS

We found that machine learning based models consistently outperform the Window Average baselines on forecasting sub-county malnutrition rates in Kenya. For example, the Gradient Boosting model achieves a mean AUC of 0.86 when forecasting with a 6-month time horizon, compared to an AUC of 0.73 achieved by the Window Average model. The Window Average method particularly fails to correctly forecast malnutrition in parts of West and Central Kenya where the acute malnutrition rate is variable over time and typically less than [Formula: see text]. We further found that machine learning models with satellite-based features alone also outperform Window Averaging baselines, while not needing clinical data at inference time. Finally, we found that recently observed outcomes and the remotely sensed data are key indicators. Our results demonstrate the ability of machine learning models to accurately forecast malnutrition in Kenya at a sub-county level from a variety of indicators.

CONCLUSIONS

To the best of the authors' knowledge, this work is the first to use clinical indicators collected via DHIS2 to forecast acute malnutrition in childhood at the sub-county level in Kenya. This work represents a foundational step in developing a broader childhood malnutrition forecasting framework, capable of monitoring malnutrition trends and identifying impending malnutrition peaks across more than 80 low- and middle-income countries collecting similar DHIS2 datasets.

摘要

目标

营养不良是全球五岁以下儿童发病和死亡的主要原因。肯尼亚等低收入和中等收入国家承担着最大的营养不良负担。十多年来,肯尼亚政府一直在使用地区卫生信息软件2(DHIS2)收集包括营养不良相关的临床指标。我们旨在解决决策者在开发和利用营养不良预测能力以进行及时干预方面的现有差距。具体而言,我们的目标包括:开发一个时空机器学习模型,利用DHIS2数据预测肯尼亚儿童的急性营养不良情况;通过整合外部补充指标(如公开可用的卫星图像驱动信号)来提高预测能力;预测不同阶段和时间范围内的急性营养不良情况,包括中度、重度和汇总病例。

方法

我们提出了一个基于临床指标和遥感数据预测肯尼亚每个次县营养不良风险的框架。为此,我们首先将临床指标和遥感卫星数据(特别是总初级生产力测量数据)汇总到次县级别。然后,我们使用急性营养不良的标准综合粮食安全阶段分类法,对次县一级被诊断为急性营养不良的儿童比例进行标注。接着,我们运用并比较了几种利用2019年1月至2024年2月收集的数据预测肯尼亚营养不良风险的方法。作为基线,我们使用了窗口平均模型,该模型反映了肯尼亚卫生部的当前做法。我们还训练了机器学习模型,如逻辑回归和梯度提升,以根据前几个月观察到的指标预测急性营养不良风险。通过将预测值与保留测试集上的已知值进行比较,使用不同的指标(主要是受试者操作特征曲线下面积(AUC))来评估预测性能。

结果

我们发现,基于机器学习的模型在预测肯尼亚次县营养不良率方面始终优于窗口平均基线。例如,梯度提升模型在进行6个月时间跨度的预测时,平均AUC达到0.86,而窗口平均模型的AUC为0.73。窗口平均方法尤其未能正确预测肯尼亚西部和中部部分地区的营养不良情况,这些地区的急性营养不良率随时间变化且通常低于[公式:见原文]。我们还发现,仅具有基于卫星特征的机器学习模型也优于窗口平均基线,并且在推理时不需要临床数据。最后,我们发现最近观察到的结果和遥感数据是关键指标。我们的结果表明,机器学习模型能够根据各种指标准确预测肯尼亚次县一级的营养不良情况。

结论

据作者所知,这项工作首次利用通过DHIS2收集的临床指标在肯尼亚次县级别预测儿童期急性营养不良情况。这项工作是开发更广泛的儿童营养不良预测框架的基础步骤,该框架能够监测营养不良趋势并识别80多个收集类似DHIS2数据集的低收入和中等收入国家中即将出现的营养不良高峰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f84/12077733/c65a7ef6cc8c/pone.0322959.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验