Suppr超能文献

由超小铁纳米颗粒诱导的内电场驱动的光自芬顿系统用于高效废水净化。

Photo-self-Fenton system driven by ultrasmall Fe nanoparticles induced internal electric field toward efficient wastewater purification.

作者信息

Yin Zhihui, Dai Min, Zhang Shuaiqi, Meng Chengzhen, Li Yaru, Situ Fengming, Qin Kena, Hu Chun, Li Fan

机构信息

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.

School of Civil Engineering, Heilongjiang University, Harbin, 150060, China.

出版信息

Environ Res. 2025 Oct 1;282:122094. doi: 10.1016/j.envres.2025.122094. Epub 2025 Jun 4.

Abstract

In photocatalytic water treatment processes, the production of hydrogen peroxide (HO) is often accompanied, which is difficult to extract from wastewater or increases costs. Additionally, adding iron ions to the wastewater to trigger the Fenton reaction further increases treatment costs and subsequent treatment difficulties. Herein, a photo-self-Fenton system, which does not require the addition of HO or iron ions, has been developed for efficient water treatment. Ultrasmall Fe nanoparticles (Fe NPs) are anchored onto a graphitic carbon nitride (g-CN) substrate to form a photo-self-Fenton catalyst (Fe-CN). The incorporation of Fe NPs introduces a doping level into the bandgap, significantly improving the catalyst's light absorption properties and carrier separation efficiency. Furthermore, the density functional theory (DFT) calculations and Kelvin probe force microscopy (KPFM) demonstrate that Fe NPs polarize the charge distribution on catalyst surface, which becomes a crucial driving force for the separation and transfer of photogenerated carriers. The optimized band structure and internal electric field jointly trigger the photo-self-Fenton reaction of dissolved O in water. The cooperative effect of hydroxyl radicals (•OH) and holes (h) achieved the rapid and efficient degradation and mineralization of emerging pollutants in water, and the Fe-CN system demonstrates exceptional resistance to interference and long-term stability in complex water conditions. This study provides a comprehensive understanding and framework for designing efficient photo-self-Fenton systems for environmental remediation.

摘要

在光催化水处理过程中,通常会伴随过氧化氢(HO)的产生,而从废水中提取过氧化氢难度较大或会增加成本。此外,向废水中添加铁离子以引发芬顿反应会进一步增加处理成本和后续处理难度。在此,一种无需添加HO或铁离子的光自芬顿系统已被开发用于高效水处理。超小铁纳米颗粒(Fe NPs)锚定在石墨相氮化碳(g-CN)基底上,形成光自芬顿催化剂(Fe-CN)。Fe NPs的掺入在带隙中引入了一个掺杂能级,显著改善了催化剂的光吸收性能和载流子分离效率。此外,密度泛函理论(DFT)计算和开尔文探针力显微镜(KPFM)表明,Fe NPs使催化剂表面的电荷分布极化,这成为光生载流子分离和转移至关重要的驱动力。优化后的能带结构和内建电场共同引发水中溶解氧的光自芬顿反应。羟基自由基(•OH)和空穴(h)的协同作用实现了水中新兴污染物的快速高效降解和矿化,并且Fe-CN系统在复杂水质条件下表现出卓越的抗干扰能力和长期稳定性。本研究为设计用于环境修复的高效光自芬顿系统提供了全面的理解和框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验