Zhang Wangzihan, Xue Mingcheng, Jin Hang, Yang Jianhui, Wu Huiquan, Qiu Bin, Jiang Yuqing, Xu Feng, Lin Bin, Kong Weiwei, Cen Jianzheng, Chen Songyue, Sun Daoheng
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, PR China.
Guangdong Beating Origin Regenerative Medicine Co., Ltd., Foshan 528231, PR China.
Acta Biomater. 2025 Jul 1;201:309-319. doi: 10.1016/j.actbio.2025.06.005. Epub 2025 Jun 4.
In vitro culture and electrophysiological monitoring of engineered cardiac tissue (ECT) are crucial for the screening and evaluation of cardiotoxic drugs. Microelectrode arrays (MEAs) offer significant advantages in non-invasive, high-throughput detection. However, existing MEAs face challenges in replicating the natural growth environment of cardiomyocytes, which hinders the morphology and functional maturation of cells. In this study, a flexible beam-based microelectrode array (BMEA) integrated with nanofiber scaffolds is presented for the culturing of well-aligned cardiac tissue and the monitoring of electrophysiological signals. Oriented nanofibers are suspended on flexible polydimethylsiloxane beams to create a 3D culture environment for tissue. The BMEA exhibits low impedance (22 ± 7 kΩ@1 kHz for electrode width of 100 μm), stable electrochemical performance, and good biocompatibility. Through a 10-day continuous culture and drug stimulation of human induced pluripotent stem cell-derived cardiomyocytes, the device demonstrates the ability to capture the electrophysiological signals dynamically while promoting the structural and functional maturation of cardiomyocytes, which show better cell orientation, larger cell size, and faster conduction velocity (∼ 21 cm/s). Further drug tests validate the effectiveness of this device. The BMEA provides a perspective tool for screening and evaluation of drug cardiotoxicity to cardiac tissues. STATEMENT OF SIGNIFICANCE: The mechanical mismatch between traditional rigid MEAs and flexible biological tissues has been partially addressed by the development of flexible MEAs based on polymer or hydrogel substrates. However, these 2D adherent culture methods still face several limitations, including lack of biomimetic ECM microstructure, insufficient intercellular interactions, and directional access to nutrients, thereby posing challenges to the growth of cardiac tissue and the maturation of its electrophysiological functions. Herein, a flexible PDMS beam-based microelectrode array (BMEA) integrated with oriented nanofiber scaffolds is proposed for in-situ electrophysiological monitoring of aligned cardiac tissue in a suspended and biomimetic 3D culture environment. The BMEA provides a promising tool for screening and evaluation of drug cardiotoxicity to cardiac tissues.
工程化心脏组织(ECT)的体外培养和电生理监测对于心脏毒性药物的筛选和评估至关重要。微电极阵列(MEA)在非侵入性、高通量检测方面具有显著优势。然而,现有的MEA在复制心肌细胞的自然生长环境方面面临挑战,这阻碍了细胞的形态和功能成熟。在本研究中,提出了一种集成纳米纤维支架的基于柔性梁的微电极阵列(BMEA),用于培养排列良好的心脏组织并监测电生理信号。定向纳米纤维悬浮在柔性聚二甲基硅氧烷梁上,为组织创建三维培养环境。BMEA表现出低阻抗(电极宽度为100μm时,在1kHz下为22±7kΩ)、稳定的电化学性能和良好的生物相容性。通过对人诱导多能干细胞衍生的心肌细胞进行为期10天的连续培养和药物刺激,该装置展示了在促进心肌细胞结构和功能成熟的同时动态捕捉电生理信号的能力,心肌细胞表现出更好的细胞取向、更大的细胞尺寸和更快的传导速度(约21cm/s)。进一步的药物测试验证了该装置的有效性。BMEA为筛选和评估药物对心脏组织的心脏毒性提供了一种有前景的工具。重要性声明:基于聚合物或水凝胶基质的柔性MEA的发展部分解决了传统刚性MEA与柔性生物组织之间的机械不匹配问题。然而,这些二维贴壁培养方法仍然面临一些局限性 , 包括缺乏仿生细胞外基质微观结构、细胞间相互作用不足以及营养物质的定向获取,从而对心脏组织的生长及其电生理功能的成熟构成挑战。在此,提出了一种集成定向纳米纤维支架的基于柔性聚二甲基硅氧烷梁的微电极阵列(BMEA),用于在悬浮且仿生的三维培养环境中对排列的心脏组织进行原位电生理监测。BMEA为筛选和评估药物对心脏组织的心脏毒性提供了一种有前景的工具。