Suppr超能文献

基于数据的美国城市建成环境对城市健康影响的评估。

Data driven assessment of built environment impacts on urban health across United States cities.

作者信息

Ghorbany Siavash, Hu Ming, Yao Siyuan, Sisk Matthew, Wang Chaoli, Zhang Kai, Nguyen Quynh Camthi

机构信息

Department of Civil and Environmental Engineering and Earth Sciences, College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.

School of Architecture, Walsh Family Hall of Architecture, University of Notre Dame, Notre Dame, IN, 46556, USA.

出版信息

Sci Rep. 2025 Jun 6;15(1):19998. doi: 10.1038/s41598-025-04567-3.

Abstract

The built environment plays a crucial role in urban health through its constant interaction with residents. Yet, a comprehensive analysis across multiple U.S. cities covering different geographical conditions has been missing. This study examines the impact of the built environment on mental, physical, and overall health in 19 major U.S. cities across diverse climate zones, aiming to discover the influential factors and create a predictive health model for the entire nation. Utilizing a convolutional neural network, this research extracted building characteristics from google street view and employed a multiple regression model, XGBoost, support vector regression (SVR), decision tree, and random forest, achieving R-squared values of 0.75, 0.76, and 0.82 for mental, physical, and general health, respectively. The findings revealed certain building features profoundly influence urban health, including lead paint as a persistent health hazard, while air conditioning boosts health outcomes. Traditional materials like wood and masonry, common in older buildings, are linked to better health compared to modern materials. The study also reveals significant geographic variations, underscoring the intricate relationship between architecture and public health. By highlighting the vital role of building features in shaping urban health, this research provides a foundation for policymakers to inform building regulations, prioritize vulnerable areas, and support health-oriented urban design, ultimately contributing to healthier, more livable urban environments.

摘要

建成环境通过与居民的持续互动在城市健康中发挥着关键作用。然而,美国多个不同地理条件城市的全面分析一直缺失。本研究考察了美国19个不同气候区主要城市的建成环境对心理、身体和整体健康的影响,旨在发现影响因素并为全国创建一个预测健康模型。本研究利用卷积神经网络从谷歌街景中提取建筑特征,并采用多元回归模型、XGBoost、支持向量回归(SVR)、决策树和随机森林,心理、身体和总体健康的决定系数(R平方)值分别达到0.75、0.76和0.82。研究结果显示,某些建筑特征对城市健康有深远影响,包括含铅油漆是持续的健康危害,而空调则能改善健康状况。与现代材料相比,旧建筑中常见的木材和砖石等传统材料与更好的健康状况相关。该研究还揭示了显著的地理差异,凸显了建筑与公共卫生之间的复杂关系。通过强调建筑特征在塑造城市健康方面的重要作用,本研究为政策制定者提供了一个基础,以指导建筑法规、确定脆弱地区的优先次序并支持以健康为导向的城市设计,最终有助于打造更健康、更宜居的城市环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d54a/12144143/d325cf7ce18c/41598_2025_4567_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验