Ceesay Baboucarr, Yasin Muhammad Waqas, Ahmed Nauman, Baber Muhammad Zafarullah, Bittaye Ebrima
Mathematics and Statistics Department, The University of Lahore, Lahore, Pakistan.
Mathematics Unit, The University of The Gambia, Serrekunda, The Gambia.
Sci Rep. 2025 Jun 6;15(1):19880. doi: 10.1038/s41598-025-95093-9.
In this manuscript, we investigate various wave forms of an integrable reduced spin Hirota-Maxwell-Bloch system, which accounts for the femtosecond pulses transmitted in an erbium doped fibre. We achieved this using periodic wave and logarithmic transformations. We investigated homoclinic breather waves, periodic lump waves, mixed waves, M-shaped waves interacting with kink and rogue waves and multi waves. Using carefully selected parameter values based on physical relevance, mathematical constraints, and stability analysis, we present three-dimensional plots and their accompanying contour and density maps for the homoclinic breather and periodic lump wave solutions using Mathematica. The solutions and their physical structures obtained explain the soliton phenomena and mimic the dynamic features of the travelling wave distortion front formed in the dispersive medium. It also illustrates the periodic wave and logarithmic transformations technique's strength, applicability, and future research opportunities in finding special solutions for a variety of nonlinear equations in physical science and engineering. Finally, as far as we could verify, this is the first work in the literature in which these ansatz functions are derived for this integrable reduced spin Hirota-Maxwell-Bloch system using logarithmic transformations.
在本论文中,我们研究了一个可积约化自旋广田 - 麦克斯韦 - 布洛赫系统的各种波形,该系统描述了在掺铒光纤中传输的飞秒脉冲。我们通过周期波和对数变换实现了这一点。我们研究了同宿呼吸波、周期块状波、混合波、与扭结波和 rogue 波相互作用的 M 形波以及多波。基于物理相关性、数学约束和稳定性分析,我们精心选择参数值,使用 Mathematica 给出了同宿呼吸波和周期块状波解的三维图及其相应的等高线图和密度图。所得到的解及其物理结构解释了孤子现象,并模拟了在色散介质中形成的行波畸变前沿的动态特征。它还展示了周期波和对数变换技术在为物理科学和工程中的各种非线性方程寻找特殊解方面的优势、适用性和未来研究机会。最后,据我们所能验证的,这是文献中首次使用对数变换为这个可积约化自旋广田 - 麦克斯韦 - 布洛赫系统推导这些假设函数的工作。