Baloch Sajawal Abbas, Abbas Muhammad, Iqbal Muhammad Kashif, Birhanu Asnake, Alharthi M R
Department of Mathematics, University of Sargodha, 40100, Sargodha, Pakistan.
Department of Mathematics, Government College University, Faisalabad, Pakistan.
Sci Rep. 2024 Dec 30;14(1):32001. doi: 10.1038/s41598-024-83552-8.
In this work, we use the ansatz transformation functions to investigate different analytical rational solutions by symbolic computation. For the (2+1)-dimensional Calogero-Bogoyavlenskii Schiff (CBS) model, we derive a variety of rational solutions, such as homoclinic breather solutions (HBs), M-shaped rational solutions (MSRs), periodic cross-rationals (PCRs), multi-wave solutions (MWs), and kink cross-rational solutions (KCRs). Their dynamic is shown in figures by selecting appropriate values for the pertinent parameters. The Calogero-Bogoyavlenskii-Schiff model describes the interface of Riemann waves in two spatial dimensions. The Riemann wave can be used to explain a wide range of physical phenomena, including internal ocean waves, tsunamis, tidal waves, and magneto-sound waves in plasmas.In addition, two different types of interactions between kink waves and M-shaped rational solutions are studied. The proposed model plays a crucial role in elucidating the internal structure of tangible composite phenomena in several fields such as nonlinear optics, wave behaviors in deep seas, plasma physics, and two-dimensional discrete electrical lattices. In order to verify the physical properties of the established solitons, we use constant parameter values to create 3D, 2D, and contour profiles of the solutions.
在这项工作中,我们使用假设变换函数通过符号计算来研究不同的解析有理解。对于(2 + 1)维卡洛杰罗 - 博戈亚夫连斯基 - 希夫(CBS)模型,我们推导了多种有理解,如同宿呼吸子解(HBs)、M 形有理解(MSRs)、周期交比解(PCRs)、多波解(MWs)和扭结交比解(KCRs)。通过为相关参数选择合适的值,在图中展示了它们的动力学。卡洛杰罗 - 博戈亚夫连斯基 - 希夫模型描述了二维空间中黎曼波的界面。黎曼波可用于解释广泛的物理现象,包括海洋内波、海啸、潮汐波以及等离子体中的磁声波。此外,还研究了扭结波与 M 形有理解之间两种不同类型的相互作用。所提出的模型在阐明非线性光学、深海波动行为、等离子体物理和二维离散电晶格等多个领域中实际复合现象的内部结构方面起着关键作用。为了验证所建立孤子的物理性质,我们使用恒定参数值来创建解的三维、二维和等高线轮廓。