Ma Yujie, Al-Aroomi Maged Ali, Zheng Yutian, Ren Wenjie, Liu Peixuan, Wu Qing, Liang Ye, Jiang Canhua
Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
The College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan Province, China.
BMC Oral Health. 2025 Jun 6;25(1):927. doi: 10.1186/s12903-025-06293-8.
OBJECTIVES: Deep convolutional neural networks (CNNs) are advancing rapidly in medical research, demonstrating promising results in diagnosis and prediction within radiology and pathology. This study evaluates the efficacy of deep learning algorithms for detecting and diagnosing dental caries using cone-beam computed tomography (CBCT) with the Mask R-CNN architecture while comparing various hyperparameters to enhance detection. MATERIALS AND METHODS: A total of 2,128 CBCT images were divided into training and validation and test datasets in a 7:1:1 ratio. For the verification of tooth recognition, the data from the validation set were randomly selected for analysis. Three groups of Mask R-CNN networks were compared: A scratch-trained baseline using randomly initialized weights (R group); A transfer learning approach with models pre-trained on COCO for object detection (C group); A variant pre-trained on ImageNetfor for object detection (I group). All configurations maintained identical hyperparameter settings to ensure fair comparison. The deep learning model used ResNet-50 as the backbone network and was trained to 300epoch respectively. We assessed training loss, detection and training times, diagnostic accuracy, specificity, positive and negative predictive values, and coverage precision to compare performance across the groups. RESULTS: Transfer learning significantly reduced training times compared to non-transfer learning approach (p < 0.05). The average detection time for group R was 0.269 ± 0.176 s, whereas groups I (0.323 ± 0.196 s) and C (0.346 ± 0.195 s) exhibited significantly longer detection times (p < 0.05). C-group, trained for 200 epochs, achieved a mean average precision (mAP) of 81.095, outperforming all other groups. The mAP for caries recognition in group R, trained for 300 epochs, was 53.328, with detection times under 0.5 s. Overall, C-group demonstrated significantly higher average precision across all epochs (100, 200, and 300) (p < 0.05). CONCLUSION: Neural networks pre-trained with COCO transfer learning exhibit superior annotation accuracy compared to those pre-trained with ImageNet. This suggests that COCO's diverse and richly annotated images offer more relevant features for detecting dental structures and carious lesions. Furthermore, employing ResNet-50 as the backbone architecture enhances the detection of teeth and carious regions, achieving significant improvements with just 200 training epochs, potentially increasing the efficiency of clinical image interpretation.
目的:深度卷积神经网络(CNN)在医学研究中发展迅速,在放射学和病理学的诊断与预测方面展现出了有前景的结果。本研究评估了使用Mask R-CNN架构的深度学习算法通过锥束计算机断层扫描(CBCT)检测和诊断龋齿的效果,同时比较了各种超参数以提高检测效果。 材料与方法:总共2128张CBCT图像按照7:1:1的比例分为训练集、验证集和测试集。为了验证牙齿识别,从验证集中随机选择数据进行分析。比较了三组Mask R-CNN网络:使用随机初始化权重的从头训练基线(R组);采用在COCO上预训练用于目标检测的模型的迁移学习方法(C组);采用在ImageNet上预训练用于目标检测的模型的变体(I组)。所有配置保持相同的超参数设置以确保公平比较。深度学习模型使用ResNet-50作为骨干网络,并分别训练300个轮次。我们评估了训练损失、检测和训练时间、诊断准确性、特异性、阳性和阴性预测值以及覆盖精度,以比较各小组的性能。 结果:与非迁移学习方法相比,迁移学习显著减少了训练时间(p < 0.05)。R组的平均检测时间为0.269±0.176秒,而I组(0.323±0.196秒)和C组(0.346±0.195秒)的检测时间明显更长(p < 0.05)。训练200个轮次的C组平均精度均值(mAP)为81.095,优于所有其他组。训练300个轮次的R组龋齿识别的mAP为53.328,检测时间在0.5秒以内。总体而言,C组在所有轮次(100、200和300)中均表现出显著更高的平均精度(p < 0.05)。 结论:与使用ImageNet预训练的神经网络相比,使用COCO迁移学习预训练的神经网络表现出更高的标注准确性。这表明COCO多样且标注丰富的图像为检测牙齿结构和龋损提供了更相关的特征。此外,采用ResNet-50作为骨干架构可增强对牙齿和龋损区域的检测,仅通过200个训练轮次就实现了显著改进,可能提高临床图像解读的效率。
Clin Oral Investig. 2025-4-14
Clin Oral Investig. 2024-11-18
J Digit Imaging. 2018-8
Clin Oral Investig. 2024-2-27
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-7
Proc Inst Mech Eng H. 2024-2
Proc IEEE Inst Electr Electron Eng. 2021-5
J Esthet Restor Dent. 2023-9
Lancet. 2022-12-3
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7
Front Plant Sci. 2022-5-25
Entropy (Basel). 2022-5-13