文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mask R-CNN在锥束计算机断层扫描中用于牙齿和龋齿自动识别的应用

Application of Mask R-CNN for automatic recognition of teeth and caries in cone-beam computerized tomography.

作者信息

Ma Yujie, Al-Aroomi Maged Ali, Zheng Yutian, Ren Wenjie, Liu Peixuan, Wu Qing, Liang Ye, Jiang Canhua

机构信息

Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.

The College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan Province, China.

出版信息

BMC Oral Health. 2025 Jun 6;25(1):927. doi: 10.1186/s12903-025-06293-8.


DOI:10.1186/s12903-025-06293-8
PMID:40481434
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12143100/
Abstract

OBJECTIVES: Deep convolutional neural networks (CNNs) are advancing rapidly in medical research, demonstrating promising results in diagnosis and prediction within radiology and pathology. This study evaluates the efficacy of deep learning algorithms for detecting and diagnosing dental caries using cone-beam computed tomography (CBCT) with the Mask R-CNN architecture while comparing various hyperparameters to enhance detection. MATERIALS AND METHODS: A total of 2,128 CBCT images were divided into training and validation and test datasets in a 7:1:1 ratio. For the verification of tooth recognition, the data from the validation set were randomly selected for analysis. Three groups of Mask R-CNN networks were compared: A scratch-trained baseline using randomly initialized weights (R group); A transfer learning approach with models pre-trained on COCO for object detection (C group); A variant pre-trained on ImageNetfor for object detection (I group). All configurations maintained identical hyperparameter settings to ensure fair comparison. The deep learning model used ResNet-50 as the backbone network and was trained to 300epoch respectively. We assessed training loss, detection and training times, diagnostic accuracy, specificity, positive and negative predictive values, and coverage precision to compare performance across the groups. RESULTS: Transfer learning significantly reduced training times compared to non-transfer learning approach (p < 0.05). The average detection time for group R was 0.269 ± 0.176 s, whereas groups I (0.323 ± 0.196 s) and C (0.346 ± 0.195 s) exhibited significantly longer detection times (p < 0.05). C-group, trained for 200 epochs, achieved a mean average precision (mAP) of 81.095, outperforming all other groups. The mAP for caries recognition in group R, trained for 300 epochs, was 53.328, with detection times under 0.5 s. Overall, C-group demonstrated significantly higher average precision across all epochs (100, 200, and 300) (p < 0.05). CONCLUSION: Neural networks pre-trained with COCO transfer learning exhibit superior annotation accuracy compared to those pre-trained with ImageNet. This suggests that COCO's diverse and richly annotated images offer more relevant features for detecting dental structures and carious lesions. Furthermore, employing ResNet-50 as the backbone architecture enhances the detection of teeth and carious regions, achieving significant improvements with just 200 training epochs, potentially increasing the efficiency of clinical image interpretation.

摘要

目的:深度卷积神经网络(CNN)在医学研究中发展迅速,在放射学和病理学的诊断与预测方面展现出了有前景的结果。本研究评估了使用Mask R-CNN架构的深度学习算法通过锥束计算机断层扫描(CBCT)检测和诊断龋齿的效果,同时比较了各种超参数以提高检测效果。 材料与方法:总共2128张CBCT图像按照7:1:1的比例分为训练集、验证集和测试集。为了验证牙齿识别,从验证集中随机选择数据进行分析。比较了三组Mask R-CNN网络:使用随机初始化权重的从头训练基线(R组);采用在COCO上预训练用于目标检测的模型的迁移学习方法(C组);采用在ImageNet上预训练用于目标检测的模型的变体(I组)。所有配置保持相同的超参数设置以确保公平比较。深度学习模型使用ResNet-50作为骨干网络,并分别训练300个轮次。我们评估了训练损失、检测和训练时间、诊断准确性、特异性、阳性和阴性预测值以及覆盖精度,以比较各小组的性能。 结果:与非迁移学习方法相比,迁移学习显著减少了训练时间(p < 0.05)。R组的平均检测时间为0.269±0.176秒,而I组(0.323±0.196秒)和C组(0.346±0.195秒)的检测时间明显更长(p < 0.05)。训练200个轮次的C组平均精度均值(mAP)为81.095,优于所有其他组。训练300个轮次的R组龋齿识别的mAP为53.328,检测时间在0.5秒以内。总体而言,C组在所有轮次(100、200和300)中均表现出显著更高的平均精度(p < 0.05)。 结论:与使用ImageNet预训练的神经网络相比,使用COCO迁移学习预训练的神经网络表现出更高的标注准确性。这表明COCO多样且标注丰富的图像为检测牙齿结构和龋损提供了更相关的特征。此外,采用ResNet-50作为骨干架构可增强对牙齿和龋损区域的检测,仅通过200个训练轮次就实现了显著改进,可能提高临床图像解读的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/7ed7ecd851f3/12903_2025_6293_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/dc334e053014/12903_2025_6293_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/6a8afcc5237f/12903_2025_6293_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/cd15f7dae619/12903_2025_6293_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/1203140035bf/12903_2025_6293_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/bc26c8906abe/12903_2025_6293_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/51203002c7a3/12903_2025_6293_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/6b3f1e00a0f0/12903_2025_6293_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/7ed7ecd851f3/12903_2025_6293_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/dc334e053014/12903_2025_6293_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/6a8afcc5237f/12903_2025_6293_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/cd15f7dae619/12903_2025_6293_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/1203140035bf/12903_2025_6293_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/bc26c8906abe/12903_2025_6293_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/51203002c7a3/12903_2025_6293_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/6b3f1e00a0f0/12903_2025_6293_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb2/12143100/7ed7ecd851f3/12903_2025_6293_Fig8_HTML.jpg

相似文献

[1]
Application of Mask R-CNN for automatic recognition of teeth and caries in cone-beam computerized tomography.

BMC Oral Health. 2025-6-6

[2]
Dental Caries Detection and Classification in CBCT Images Using Deep Learning.

Int Dent J. 2024-4

[3]
Localisation and classification of multi-stage caries on CBCT images with a 3D convolutional neural network.

Clin Oral Investig. 2025-4-14

[4]
Detection of C-shaped mandibular second molars on panoramic radiographs using deep convolutional neural networks.

Clin Oral Investig. 2024-11-18

[5]
Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.

J Dent. 2018-7-26

[6]
Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study.

J Dent. 2023-10

[7]
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.

J Digit Imaging. 2018-8

[8]
Detection of dental caries under fixed dental prostheses by analyzing digital panoramic radiographs with artificial intelligence algorithms based on deep learning methods.

BMC Oral Health. 2025-2-10

[9]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[10]
A novel deep learning-based perspective for tooth numbering and caries detection.

Clin Oral Investig. 2024-2-27

本文引用的文献

[1]
Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-7

[2]
Deep learning-based tooth segmentation methods in medical imaging: A review.

Proc Inst Mech Eng H. 2024-2

[3]
Dental Caries Detection and Classification in CBCT Images Using Deep Learning.

Int Dent J. 2024-4

[4]
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.

Proc IEEE Inst Electr Electron Eng. 2021-5

[5]
Applications, functions, and accuracy of artificial intelligence in restorative dentistry: A literature review.

J Esthet Restor Dent. 2023-9

[6]
Detecting dental caries on oral photographs using artificial intelligence: A systematic review.

Oral Dis. 2024-5

[7]
WHO calls to end the global crisis of oral health.

Lancet. 2022-12-3

[8]
Self-supervised Assisted Active Learning for Skin Lesion Segmentation.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[9]
Deep Learning-Based Segmentation of Peach Diseases Using Convolutional Neural Network.

Front Plant Sci. 2022-5-25

[10]
Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection.

Entropy (Basel). 2022-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索