Zhou S Kevin, Greenspan Hayit, Davatzikos Christos, Duncan James S, van Ginneken Bram, Madabhushi Anant, Prince Jerry L, Rueckert Daniel, Summers Ronald M
School of Biomedical Engineering, University of Science and Technology of China and Institute of Computing Technology, Chinese Academy of Sciences.
Biomedical Engineering Department, Tel-Aviv University, Israel.
Proc IEEE Inst Electr Electron Eng. 2021 May;109(5):820-838. doi: 10.1109/JPROC.2021.3054390. Epub 2021 Feb 26.
Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.
自复兴以来,深度学习已广泛应用于各种医学成像任务,并在许多医学成像应用中取得了显著成功,从而推动我们进入了所谓的人工智能(AI)时代。众所周知,AI的成功主要归功于针对单一任务的带注释大数据的可用性以及高性能计算的进步。然而,医学成像提出了深度学习方法面临的独特挑战。在这篇综述论文中,我们首先介绍医学成像的特点,突出医学成像中的临床需求和技术挑战,并描述深度学习的新兴趋势如何解决这些问题。我们涵盖网络架构、稀疏和噪声标签、联邦学习、可解释性、不确定性量化等主题。然后,我们展示一些临床实践中常见的案例研究,包括数字病理学以及胸部、脑部、心血管和腹部成像。我们并非进行详尽的文献综述,而是描述与这些案例研究应用相关的一些突出研究亮点。最后,我们进行讨论并展示有前景的未来方向。
Proc IEEE Inst Electr Electron Eng. 2021-5
Diagnostics (Basel). 2022-11-15
Sensors (Basel). 2023-1-5
Multimed Syst. 2022
IEEE Trans Neural Netw Learn Syst. 2023-11
Comput Biol Med. 2023-2
World J Methodol. 2025-12-20
Bioengineering (Basel). 2025-7-29
Mayo Clin Proc Digit Health. 2025-7-18
Med Image Comput Comput Assist Interv. 2018-9
Med Image Comput Comput Assist Interv. 2020-10
Radiol Artif Intell. 2020-7-22
Med Image Anal. 2021-5
Med Image Comput Comput Assist Interv. 2020-10
Med Image Comput Comput Assist Interv. 2019-10
Med Image Comput Comput Assist Interv. 2018-9